Skip to main content
Log in

Brood-care experience, nursing performance, and neural development in the ant Pheidole dentata

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Social insect workers mature behaviorally and physiologically with increasing age, generally transitioning from or adding new tasks to their existing repertoire of within-nest nursing tasks. As adult minor workers of the ant Pheidole dentata age, they attend to brood more frequently and nurse more efficiently, perform a broader array of tasks, and undergo myological and neural development. Because these factors covary, the causal relationships among age, task experience, and neural and physiological maturation are not understood. We compared brood-care performance and efficiency by 10-day-old P. dentata minors that had acquired nursing experience to that of equal-age minors experimentally deprived of brood contact. We found the frequency and efficiency of nursing did not significantly differ between experimental and control worker groups, suggesting experience is not required for age-related improvement in nursing efficiency. Workers with and without prior nursing experience did not significantly differ macroscopically in brain anatomy or in brain serotonin content, although workers from the two treatments had slightly, but significantly, different levels of brain dopamine. These results suggest experience with brood is not required for P. dentata minor workers to develop nursing proficiency or undergo a substantial degree of the age-related neural development identifiable by our assessments, which could underscore the ontogeny of brood-care efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc Lond B 277:503–511

    Article  Google Scholar 

  • Boulay R, Soroker V, Godzinska EJ, Hefetz A, Lenoir A (2000) Octopamine reverses the isolation-induced increase in trophallaxis in the carpenter ant Camponotus fellah. J Exp Biol 203:513–520

    CAS  PubMed  Google Scholar 

  • Brown SM, Napper RM, Mercer AR (2004) Foraging experience, glomerulus volume, and synapse number: a stereological study of the honey bee antennal lobe. J Neurobiol 60:40–50

    Article  PubMed  Google Scholar 

  • Cassill DL, Tschinkel WR (1995) Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim Behav 50:801–813

    Article  Google Scholar 

  • Cassill DL, Tschinkel WR (1999) Effects of colony-level attributes on larval feeding in the fire ant, Solenopsis invicta. Insect Soc 46:261–266

    Article  Google Scholar 

  • Collett TS, Graham P, Durier V (2003) Route learning by insects. Curr Opin Neurobiol 13:718–725

    Article  CAS  PubMed  Google Scholar 

  • Creemers B, Gobin B, Billen J (2003) Larval begging behaviour in the ant Myrmica rubra. Ethol Ecol Evol 15:261–272

    Article  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    Article  CAS  PubMed  Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    Article  CAS  PubMed  Google Scholar 

  • Durst C, Eichmuller S, Menzel R (1994) Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behav Neural Biol 62:259–263

    Article  CAS  PubMed  Google Scholar 

  • Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232

    Article  CAS  PubMed  Google Scholar 

  • Fahrbach SE, Moore D, Capaldi EA, Farris SM, Robinson GE (1998) Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn Memory 5:115–123

    CAS  Google Scholar 

  • Falibene A, Rossler W, Josens R (2012) Serotonin depresses feeding behaviour in ants. J Insect Physiol 58:7–17

    Article  CAS  PubMed  Google Scholar 

  • Farris SM (2011) Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev 40:368–379

    Article  PubMed  Google Scholar 

  • Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21:6395–6404

    CAS  PubMed  Google Scholar 

  • Giraldo Y, Patel E, Gronenberg W, Traniello JFA (2013) Division of labor and structural plasticity in an extrinsic serotonergic mushroom body neuron in the ant Pheidole dentata. Neurosci Lett 534:107–111

    Article  CAS  PubMed  Google Scholar 

  • Gronenberg W, Heeren S, Hölldobler B (1996) Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J Exp Biol 199:2011–2019

    PubMed  Google Scholar 

  • Hardie SL, Hirsh J (2006) An improved method for the separation and detection of biogenic amines in adult Drosophila brain extracts by high performance liquid chromatography. J Neurosci Meth 153:243–249

    Article  CAS  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hopkins TL, Kramer KJ (1992) Insect cuticle sclerotization. Annu Rev Entomol 37:273–302

    Article  CAS  Google Scholar 

  • Hourcade B, Muenz TS, Sandoz J-C, Rössler W, Devaud J-M (2010) Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain? J Neurosci 30:6461–6465

    Article  CAS  PubMed  Google Scholar 

  • Jones TA, Donlan NA, O'Donnell S (2009) Growth and pruning of mushroom body Kenyon cell dendrites during worker behavioral development in the paper wasp, Polybia aequatorialis (Hymenoptera: Vespidae). Neurobiol Learn Mem 92:485–495

    Article  PubMed  Google Scholar 

  • Komdeur J (2006) Variation in individual investment strategies among social animals. Ethology 112:729–747

    Article  Google Scholar 

  • Kühn-Bühlmann S, Wehner R (2006) Age-dependent and task-related volume changes in the mushroom bodies of visually guided desert ants, Cataglyphis bicolor. J Neurobiol 66:511–521

    Article  PubMed  Google Scholar 

  • Mas F, Kolliker M (2011) Differential effects of offspring condition-dependent signals on maternal care regulation in the European earwig. Behav Ecol Sociobiol 65:341–349

    Article  Google Scholar 

  • Mery F, Burns J (2010) Behavioural plasticity: an interaction between evolution and experience. Evol Ecol 24:571–583

    Article  Google Scholar 

  • Muscedere ML, Johnson N, Gillis BC, Kamhi JF, Traniello JFA (2012) Serotonin modulates worker responsiveness to trail pheromone in the ant Pheidole dentata. J Comp Physiol A 198:219–227

    Article  CAS  Google Scholar 

  • Muscedere ML, Traniello JFA (2012) Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste- and age-related patterns of worker brain organization. PLoS One 7:e31618

    Article  CAS  PubMed  Google Scholar 

  • Muscedere ML, Traniello JFA, Gronenberg W (2011) Coming of age in an ant colony: cephalic muscle maturation accompanies behavioral development in Pheidole dentata. Naturwissenschaften 98:783–793

    Article  CAS  PubMed  Google Scholar 

  • Muscedere ML, Willey TA, Traniello JFA (2009) Age and task efficiency in the ant Pheidole dentata: young minor workers are not specialist nurses. Anim Behav 77:911–918

    Article  Google Scholar 

  • O'Donnell S, Donlan NA, Jones TA (2004) Mushroom body structural change is associated with division of labor in eusocial wasp workers (Polybia aequatorialis, Hymenoptera: Vespidae). Neurosci Lett 356:159–162

    Article  PubMed  Google Scholar 

  • Pfaff D, Waters E, Khan Q, Zhang X, Numan M (2011) Minireview: estrogen receptor-initiated mechanisms causal to mammalian reproductive behaviors. Endocrinology 152:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Ravary F, Lecoutey E, Kaminski G, Châline N, Jaisson P (2007) Individual experience alone can generate lasting division of labor in ants. Curr Biol 17:1308–1312

    Article  CAS  PubMed  Google Scholar 

  • Riveros AJ, Gronenberg W (2010) Brain allometry and neural plasticity in the bumblebee Bombus occidentalis. Brain Behav Evol 75:138–148

    Article  PubMed  Google Scholar 

  • Ross HE, Young LJ (2009) Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrin 30:534–547

    Article  CAS  Google Scholar 

  • Schulz DJ, Barron AB, Robinson GE (2002) A role for octopamine in honey bee division of labor. Brain Behav Evol 60:350–359

    Article  PubMed  Google Scholar 

  • Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. J Comp Physiol A 184:481–488

    Article  CAS  PubMed  Google Scholar 

  • Seid MA, Goode K, Li C, Traniello JFA (2008) Age- and subcaste-related patterns of serotonergic immunoreactivity in the optic lobes of the ant Pheidole dentata. Dev Neurobiol 68:1325–1333

    Article  PubMed  Google Scholar 

  • Seid MA, Harris KM, Traniello JFA (2005) Age-related changes in the number and structure of synapses in the lip region of the mushroom bodies in the ant Pheidole dentata. J Comp Neurol 488:269–277

    Article  PubMed  Google Scholar 

  • Seid MA, Traniello JFA (2005) Age-related changes in biogenic amines in individual brains of the ant Pheidole dentata. Naturwissenschaften 92:198–201

    Article  CAS  PubMed  Google Scholar 

  • Seid MA, Traniello JFA (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behav Ecol Sociobiol 60:631–644

    Article  Google Scholar 

  • Seid MA, Wehner R (2008) Ultrastructure and synaptic differences of the boutons of the projection neurons between the lip and collar regions of the mushroom bodies in the ant, Cataglyphis albicans. J Comp Neurol 507:1102–1108

    Article  PubMed  Google Scholar 

  • Sigg D, Thompson CM, Mercer AR (1997) Activity-dependent changes to the brain and behavior of the honey bee, Apis mellifera (L.). J Neurosci 17:7148–7156

    CAS  PubMed  Google Scholar 

  • Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284

    Article  CAS  PubMed  Google Scholar 

  • Stieb SM, Hellwig A, Wehner R, Roessler W (2012) Visual experience affects both behavioral and neuronal aspects in the individual life history of the desert ant Cataglyphis fortis. Dev Neurobiol 72:729–742

    Article  PubMed  Google Scholar 

  • Stieb SM, Muenz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423

    Article  PubMed  Google Scholar 

  • Stolzenberg DS, Rissman EF (2011) Oestrogen-independent, experience-induced maternal behaviour in female mice. J Neuroendocrinol 23:345–354

    Article  CAS  PubMed  Google Scholar 

  • Stolzenberg DS, Stevens JS, Rissman EF (2012) Experience-facilitated improvements in pup retrieval; evidence for an epigenetic effect. Horm Behav 62:128–135

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291

    Article  PubMed  Google Scholar 

  • Trumbo ST, Robinson GE (2008) Social and nonsocial stimuli and juvenile hormone titer in a male burying beetle, Nicrophorus orbicollis. J Insect Physiol 54:630–635

    Article  CAS  PubMed  Google Scholar 

  • Vander Meer RK, Preston CA, Hefetz A (2008) Queen regulates biogenic amine level and nestmate recognition in workers of the fire ant, Solenopsis invicta. Naturwissenschaften 95:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Wagener-Hulme C, Kuehn JC, Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies. J Comp Physiol A 184:471–479

    Article  CAS  PubMed  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588

    Article  CAS  Google Scholar 

  • Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D, LeConte Y, Rodriguez-Zas S, Robinson GE (2006) Genomic dissection of behavioral maturation in the honey bee. P Natl Acad Sci USA 103:16068–16075

    Article  CAS  Google Scholar 

  • Wilson EO (1976) Behavioral discretization and number of castes in an ant species. Behav Ecol Sociobiol 1:141–154

    Article  Google Scholar 

  • Withers GS, Fahrbach SE, Robinson GE (1993) Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364:238–240

    Article  CAS  PubMed  Google Scholar 

  • Withers GS, Fahrbach SE, Robinson GE (1995) Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. J Neurobiol 26:130–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are, as always, very grateful to Lloyd Davis for his assistance in the field. This work was supported by a Boston University Undergraduate Research Opportunities Grant to AD and by the National Science Foundation [Graduate Research Fellowship to MLM, grant numbers IOB 0725013 and 0724591 to JFAT and Wulfila Gronenberg, respectively, with REU supplements].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario L. Muscedere.

Additional information

Communicated by W. T. Wcislo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscedere, M.L., Djermoun, A. & Traniello, J.F.A. Brood-care experience, nursing performance, and neural development in the ant Pheidole dentata . Behav Ecol Sociobiol 67, 775–784 (2013). https://doi.org/10.1007/s00265-013-1501-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-013-1501-1

Keywords

Navigation