Skip to main content
Log in

Octopamine and tyramine modulate pheromone-sensitive olfactory sensilla of the hawkmoth Manduca sexta in a time-dependent manner

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In moths octopamine improved pheromone-dependent mate search time dependently. In the nocturnal hawkmoth Manduca sexta long-term tip recordings of trichoid sensilla were performed to investigate whether biogenic amines modulate pheromone transduction time dependently. At three Zeitgebertimes octopamine, tyramine and the octopamine antagonist epinastine were applied during non-adapting pheromone-stimulation. At ZT 8-11, during the photophase, when sensilla were adapted, octopamine and to a lesser extent tyramine increased the bombykal-dependent sensillar potential amplitude and initial action potential (AP) frequency. In addition, during the photophase, when sensilla are less able to resolve pheromone pulses, octopamine rendered pheromone responses more phasic and sensitive, and raised the spontaneous AP frequency. During the late scotophase, at ZT 22-1, when the antenna appeared maximally sensitized for pheromone pulse detection and endogenous octopamine levels are high, exogenously applied octopamine was ineffective. Epinastine blocked the pheromone-dependent AP response at ZT 8-11 and slightly affected it at ZT 22-1, while it had no effect on the sensillar potential amplitude. Epinastine decreased the spontaneous AP activity during photophase and scotophase and rendered pheromone responses more tonic in the scotophase. We hypothesize that the presence of octopamine in the antenna is obligatory for the detection of intermittent pheromone pulses at all Zeitgebertimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AP:

Action potential

BAL:

Bombykal

EAG:

Electroantennogram

ISI:

Interspike interval

ISTI:

Interstimulus interval

OA:

Octopamine

ORN:

Olfactory receptor neuron

PER:

PERIOD

PSTH:

Post-stimulus-time-histogram

SP:

Sensillar potential

TA:

Tyramine

ZT:

Zeitgebertime

References

  • Almaas TJ, Christensen TA, Mustaparta H (1991) Chemical communication in heliothine moths: I. Antennal receptor neurons encode several features of intra- and interspecific odorants in the male corn earworm moth Helicoverpa zea. J Comp Physiol A 169:249–258

    Article  Google Scholar 

  • Balfanz S, Strünker T, Frings S, Baumann A (2005) A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 93:440–451 (Erratum: J Neurochem 94:1168, 2005)

    Article  PubMed  CAS  Google Scholar 

  • Bell RA, Joachim FA (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Entomol Soc Am 69:365–373

    Google Scholar 

  • Bischof LJ, Enan EE (2004) Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochem Mol Biol 34:511–521

    Article  PubMed  CAS  Google Scholar 

  • Bobkov YV, Ache BW (2007) Intrinsically bursting olfactory receptor neurons. J Neurophysiol 97:1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Brigaud I, Grosmaître X, François MC, Jacquin-Joly E (2009) Cloning and expression pattern of a putative octopamine/tyramine receptor in antennae of the noctuid moth Mamestra brassicae. Cell Tissue Res 335:445–463

    Article  Google Scholar 

  • Dacks AM, Dacks JB, Christensen TA, Nighorn AJ (2006) The cloning of one putative octopamine receptor and two putative serotonin receptors from the tobacco hawkmoth Manduca sexta. Insect Biochem Mol Biol 36:741–747

    Article  PubMed  CAS  Google Scholar 

  • Dolzer J (2002) Mechanisms of modulation and adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. Ph.D. thesis, Philipps-Universität, Marburg, http://archiv.ub.uni-marburg.de/diss/z2002/0185

  • Dolzer J, Krannich S, Fischer K, Stengl M (2001) Oscillations of the transepithelial potential of moth olfactory sensilla are influenced by octopamine and serotonin. J Exp Biol 204:2781–2794

    PubMed  CAS  Google Scholar 

  • Dolzer J, Fischer K, Stengl M (2003) Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. J Exp Biol 206:1575–1588

    Article  PubMed  Google Scholar 

  • Dolzer J, Krannich S, Stengl M (2008) Pharmacological investigation of protein kinase C- and cGMP-dependent ion channels in cultured olfactory receptor neurons of the hawkmoth Manduca sexta. Chem Senses 33:803–813

    Article  PubMed  CAS  Google Scholar 

  • Evans PD, Maqueira B (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5:111–118

    Article  PubMed  CAS  Google Scholar 

  • Farooqui T (2007) Octopamine-mediated neuromodulation of insect senses. Neurochem Res 32:1511–1529

    Article  PubMed  CAS  Google Scholar 

  • Flecke C, Dolzer J, Krannich S, Stengl M (2006) Perfusion with cGMP analogue adapts the action potential response of pheromone-sensitive sensilla trichoidea of the hawkmoth Manduca sexta in a daytime-dependent manner. J Exp Biol 209:3898–3912

    Article  PubMed  CAS  Google Scholar 

  • Frings S, Lindemann B (1988) Odorant response of isolated olfactory receptor cells is blocked by amiloride. J Membr Biol 105:233–243

    Article  PubMed  CAS  Google Scholar 

  • Grosmaitre X, Marion-Poll F, Renou M (2001) Biogenic amines modulate olfactory receptor neurons firing activity in Mamestra brassicae. Chem Senses 26:653–661

    Article  PubMed  CAS  Google Scholar 

  • Han KA, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18:3650–3658

    PubMed  CAS  Google Scholar 

  • Holy TE, Dulac C, Meister M (2000) Responses of vomeronasal neurons to natural stimuli. Science 289:1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Itagaki H, Conner WE (1988) Calling behavior of Manduca sexta (L.) (Lepidoptera: Sphingidae) with notes on the morphology of the female sex pheromone gland. Ann Entomol Soc Am 81:798–807

    Google Scholar 

  • Kaissling KE, Hildebrand JG, Tumlinson JH (1989) Pheromone receptor cells in the male moth Manduca sexta. Arch Insect Biochem Physiol 10:273–279

    Article  CAS  Google Scholar 

  • Keil TA (1989) Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21:139–151

    Article  PubMed  CAS  Google Scholar 

  • Kodadová B (1996) Resolution of pheromone pulses in receptor cells of Antheraea polyphemus at different temperatures. J Comp Physiol A 179:301–310

    Google Scholar 

  • Krannich S, Stengl M (2008) Cyclic nucleotide-activated currents in cultured olfactory receptor neurons of the hawkmoth Manduca sexta. J Neurophysiol 100:2866–2877

    Article  PubMed  Google Scholar 

  • Krishnan B, Dryer SE, Hardin PE (1999) Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400:375–378

    Article  PubMed  CAS  Google Scholar 

  • Krishnan P, Chatterjee A, Tanoue S, Hardin PE (2008) Spike amplitude of single-unit responses in antennal sensillae is controlled by the Drosophila circadian clock. Curr Biol 18:803–807

    Article  PubMed  CAS  Google Scholar 

  • Lehman HK (1990) Circadian control of Manduca sexta flight. Abstr Soc Neurosci 16:1334

    Google Scholar 

  • Lee JK, Strausfeld NJ (1990) Structure, distribution, and number of surface sensilla and their receptor cells on the antennal flagellum of the male sphinx moth Manduca sexta. J Neurocytol 19:519–538

    Article  PubMed  CAS  Google Scholar 

  • Lingren PD, Greene GL, Davis DR, Baumhover AH, Henneberry TJ (1977) Nocturnal behavior of four lepidopteran pests that attack tobacco and other crops. Ann Entomol Soc Am 70:161–167

    Google Scholar 

  • Linn CE Jr, Roelofs WL (1984) Sublethal effects of neuroactive compounds on pheromone response thresholds in male oriental fruit moths. Arch Insect Biochem Physiol 1:331–344

    Article  CAS  Google Scholar 

  • Linn CE Jr, Roelofs WL (1986) Modulatory effects of octopamine and serotonin on male sensitivity and periodicity of response to sex pheromone in the cabbage looper moth, Trichoplusia ni. Arch Insect Biochem Physiol 3:161–171

    Article  CAS  Google Scholar 

  • Linn CE Jr, Roelofs WL (1992) Role of photoperiod cues in regulating the modulatory action of octopamine on pheromone-response thresholds in the cabbage looper moth. Arch Insect Biochem Physiol 20:285–302

    Article  CAS  Google Scholar 

  • Linn CE Jr, Campbell MG, Roelofs WL (1992) Photoperiod cues and the modulatory action of octopamine and 5-hydroxytryptamine on locomotor and pheromone response in male gypsy moths, Lymantria dispar. Arch Insect Biochem Physiol 20:265–284

    Article  CAS  Google Scholar 

  • Linn CE Jr, Poole KR, Roelofs WL (1994) Studies on biogenic amines and their metabolites in nervous tissue and hemolymph of adult male cabbage looper moths I. Quantitation of photoperiod changes. Comp Biochem Physiol 108:73–85

    Article  Google Scholar 

  • Linn CE Jr, Campbell MG, Poole KR, Wu W-Q, Roelofs WL (1996) Effects of photoperiod on the circadian timing of pheromone response in male Trichoplusia ni: relationship to the modulatory action of octopamine. J Insect Physiol 42:881–891

    Article  CAS  Google Scholar 

  • Mafra-Neto A, Cardé RT (1995) Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males. Physiol Entomol 20:117–133

    Article  Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560

    Article  PubMed  CAS  Google Scholar 

  • Merlin C, François MC, Queguiner I, Maibèche-Coisné M, Jacquin-Joly E (2006) Evidence for a putative antennal clock in Mamestra brassicae: molecular cloning and characterization of two clock genes—period and cryptochrome—in antennae. Insect Mol Biol 15:137–145

    Article  PubMed  CAS  Google Scholar 

  • Merlin C, Lucas P, Rochat D, François MC, Maibèche-Coisne M, Jacquin-Joly E (2007) An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the Moth Spodoptera littoralis. J Biol Rhythms 22:502–514

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Utsumi T, Ozoe Y (2003) B96Bom encodes a Bombyx mori tyramine receptor negatively coupled to adenylate cyclase. Insect Mol Biol 12:217–223

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Solari P, Garau L, Liscia A, Crnjar R, Onali P (2005) Stimulation of cyclic AMP formation and nerve electrical activity by octopamine in the terminal abdominal ganglion of the female gypsy moth Lymantria dispar. Brain Res 1071:63–74

    Article  Google Scholar 

  • Page TL, Koelling E (2003) Circadian rhythm in olfactory response in the antennae controlled by the optic lobe in the cockroach. J Insect Physiol 49:697–707

    Article  PubMed  CAS  Google Scholar 

  • Payne TL, Shorey HH, Gaston LK (1969) Sex pheromones of noctuid moths: factors influencing antennal responsiveness in males of Trichoplusia ni. J Insect Physiol 16:1043–1055

    Article  Google Scholar 

  • Pittendrigh CS, Eichhorn JH, Minis DH, Bruce VG (1970) Circadian systems, VI. Photoperiodic time measurement in Pectinophora gossypiella. Proc Natl Acad Sci USA 66:758–764

    Article  PubMed  CAS  Google Scholar 

  • Pophof B (2000) Octopamine modulates the sensitivity of silkmoth pheromone receptor neurons. J Comp Physiol A 186:307–313

    Article  PubMed  CAS  Google Scholar 

  • Pophof B (2002) Octopamine enhances moth olfactory responses to pheromones, but not those to general odorants. J Comp Physiol A 188:659–662

    Article  CAS  Google Scholar 

  • Reisert J, Matthews HR (2001) Responses to prolonged odour stimulation in frog olfactory receptor cells. J Physiol 534:179–191

    Article  PubMed  CAS  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477

    Article  PubMed  CAS  Google Scholar 

  • Roeder T, Degen J, Gewecke M (1998) Epinastine, a highly specific antagonist of insect neuronal octopamine receptors. Eur J Pharmacol 349:171–177

    Article  PubMed  CAS  Google Scholar 

  • Rosén WQ (2002) Endogenous control of circadian rhythms of pheromone production in the turnip moth Agrotis segetum. Arch Insect Biochem Physiol 50:21–30

    Article  PubMed  Google Scholar 

  • Rosén WQ, Han GB, Löfstedt C (2003) The circadian rhythm of the sex-pheromone-mediated behavioral response in the turnip moth, Agrotis segetum, is not controlled at the peripheral level. J Biol Rhythms 18:402–408

    Article  PubMed  Google Scholar 

  • Rospars JP, Lánský P, Vaillant J, Duchamp-Viret P, Duchamp A (1994) Spontaneous activity of first- and second-order neurons in the frog olfactory system. Brain Res 662:31–44

    Article  PubMed  Google Scholar 

  • Sanes JR, Hildebrand JG (1976) Origin and morphogenesis of sensory neurons in an insect antenna. Dev Biol 51:300–319

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Riddiford LM (1984) Regulation of reproductive behaviour and egg maturation in the tobacco hawk moth, Manduca sexta. Physiol Entomol 9:315–327

    Article  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Amlaiky N, Plassat J-L, Borelli E, Hen R (1990) Cloning and characterization of a Drosophila tyramine receptor. EMBO J 9:3611–3617

    PubMed  CAS  Google Scholar 

  • Schuckel J, Siwicki KK, Stengl M (2007) Putative circadian pacemaker cells in the antenna of the hawkmoth Manduca sexta. Cell Tissue Res 330:271–278

    Article  PubMed  Google Scholar 

  • Schröter U, Malun D, Menzel R (2007) Innervation pattern of suboesophageal ventral unpaired median neurones in the honeybee brain. Cell Tissue Res 327:647–667

    Article  PubMed  Google Scholar 

  • Silvegren G, Löfstedt C, Rosén WQ (2005) Circadian mating activity and effect of pheromone pre-exposure on pheromone response rhythms in the moth Spodoptera littoralis. J Insect Physiol 51:277–286

    Article  PubMed  CAS  Google Scholar 

  • Stengl M, Zintl R (1996) NADPH-diaphorase staining in the antenna of the moth Manduca sexta. J Exp Biol 199:1063–1072

    PubMed  CAS  Google Scholar 

  • Stengl M, Zintl R, de Vente J, Nighorn A (2001) Localization of cGMP-immunoreactivity and of soluble guanylyl cyclase in antennal sensilla of the hawkmoth Manduca sexta. Cell Tissue Res 304:409–421

    Article  PubMed  CAS  Google Scholar 

  • Tanoue S, Krishnan T, Krishnan B, Dryer SE, Hardin PE (2004) Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr Biol 14:638–649

    Article  PubMed  CAS  Google Scholar 

  • Tanoue S, Krishnan P, Chatterjee A, Hardin PE (2008) G protein-coupled receptor kinase 2 is required for rhythmic olfactory responses in Drosophila. Curr Biol 18:787–794

    Article  PubMed  CAS  Google Scholar 

  • Tumlinson JH, Brennan MM, Doolittle RE, Mitchell ER, Brabham A, Mazomemos BE, Baumhover AH, Jackson DM (1989) Identification of a pheromone blend attractive to Manduca sexta (L.) males in a wind tunnel. Arch Insect Biochem Physiol 10:255–271

    Article  CAS  Google Scholar 

  • Vickers NJ, Baker TC (1992) Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera: Noctuidae). J Insect Behav 5:669–687

    Article  Google Scholar 

  • Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Worster AS, Seabrook WD (1988) Electrophysiological investigation of diel variations in the antennal sensitivity of the male spruce budworm moth Choristoneura fumiferana (Lepidoptera: Tortricidae). J Insect Physiol 35:1–5

    Article  Google Scholar 

  • Zhou X, Yuan C, Guo A (2005) Drosophila olfactory response rhythms require clock genes but not pigment dispersing factor or lateral neurons. J Biol Rhythms 20:237–244

    Article  PubMed  Google Scholar 

  • Zhukovskaya MI, Kapitsky SV (2006) Activity modulation in cockroach sensillum: the role of octopamine. J Insect Physiol 52:76–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jonas Benzler, Sandy Fastner and Sandra Utz for insect rearing, Thomas Christensen and Jürgen Krieger for the generous gift of BAL and Horst Schmidt for good technical solutions. All experiments comply with the “Principles of animal care”, publication No. 86-23, revised 1985 of the National Institute of Health and with the German Animal Protection Law. This work was supported by Deutsche Forschungsgemeinschaft grant STE 531/13-1 to Monika Stengl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Stengl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flecke, C., Stengl, M. Octopamine and tyramine modulate pheromone-sensitive olfactory sensilla of the hawkmoth Manduca sexta in a time-dependent manner. J Comp Physiol A 195, 529–545 (2009). https://doi.org/10.1007/s00359-009-0429-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0429-4

Keywords

Navigation