Skip to main content

Responses of Insect Olfactory Neurons to Single Pheromone Molecules

  • Chapter
  • First Online:
Olfactory Concepts of Insect Control - Alternative to insecticides

Abstract

The status of our understanding of the molecular processes underlying olfactory reception in insects was summarized by Wicher (Progress in molecular biology and translational science, vol 130. Elsevier, New York, pp 37–54, 2015; see also Chap. 4) and recently by Stengl (Chemosensory transduction in arthropods. In: Byrne JH (ed) Oxford handbooks online. The Oxford handbook of invertebrate neurobiology. Oxford University Press, pp 1–42. https://doi.org/10.1093/oxfordhb/9780190456757.013.15, 2017) and Wicher and Grosse-Wilde (Chemoreceptors in evolution. In: Kaas J (ed) Evolution of nervous systems 2e. Elsevier, Oxford, pp 245 -255, 2017). The present chapter adds an overdue review of studies dealing with the responses of moth antennal olfactory neurons (nerve cells) to single impacts of airborne pheromone molecules. Weak pheromone stimuli elicit “elementary receptor potentials” (ERPs) which consist of one or several “bumps”, transient negative deflections of the resting trans-epithelial potential recorded from the tips of single trichoid sensilla, i.e. olfactory mini-organs on insect antennae. In the male silkmoth Bombyx mori a bump may elicit one, seldom two or three nerve impulses, but up to five impulses in the sphingid moth Manduca sexta. According to behavioral, electrophysiological and radiometric studies, the ERPs are elicited by single pheromone molecules. The analysis of the neuro-electrical circuit of moths sensilla revealed that the average bump amplitude (of about 0.5 mV) reflects an increase of the membrane conductance of an olfactory neuron by about 30 pS. The observation of several sublevels of bump amplitudes in B. mori suggest either varying degrees of opening of a single ion channel or varying numbers of superimposed openings of smaller channels. At weak stimulus intensities ion channels might be directly gated by the odor molecule-receptor interaction. At higher intensities intracellular signaling might be responsible for diminished channel opening that causes widening the range of the pheromone dose-response and adaptation (reduced responsiveness) after strong stimuli. In B. mori the temporal characteristics of the responses to single pheromone molecules were used to calculate the apparent residence time of the pheromone molecule at the receptor molecule, in the range of 100 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ala-Laurila P, Donner K, Koskelainen A (2004) Thermal activation and photoactivation of visual pigments. Biophys J 86:3653–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrozo RB, Kaissling KE (2002) Repetitive stimulation of olfactory receptor cells in female silkmoths Bombyx mori L. J Insect Physiol 48:825–834

    Article  CAS  PubMed  Google Scholar 

  • Bhandawat V, Reisert J, Yau KW (2005) Elementary response of olfactory receptor neurons to odorants. Science 308:1931–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandawat V, Reisert J, Yau KW (2010) Signaling by olfactory receptor neurons near threshold. Proc Natl Acad Sci U S A 107:18682–18687

    Article  PubMed  PubMed Central  Google Scholar 

  • Boeckh J, Boeckh V (1979) Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum of Antheraea pernyi and A. polyphemus (Saturnidae). J Comp Physiol 132:235–242

    Article  CAS  Google Scholar 

  • Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14b:283–284

    Google Scholar 

  • De Brito-Sanchez MG, Kaissling KE (2005) Inhibitory and excitatory effects of iodobenzene on the antennal benzoic acid receptor cell of the female silk moth Bombyx mori L. Chem Senses 30:1–8

    Article  CAS  Google Scholar 

  • De Kramer JJ (1985) The electrical circuitry of an olfactory sensillum in Antheraea polyphemus. J Neurosci 5:2484–24935

    Article  PubMed  PubMed Central  Google Scholar 

  • De Kramer JJ, Kaissling KE, Keil T (1984) Passive electrical properties of insect sensilla may produce the biphasic shape of spikes. Chem Senses 8:289–295

    Article  Google Scholar 

  • Den Otter CJ, Behan M, Maes FW (1980) Single cell responses in female Pieris brassicae (Lepidoptera: Pieridae) to plant volatiles and conspecific egg odours. J Insect Physiol 26:465–472

    Article  Google Scholar 

  • Devos M, Patte J, Rouault J, Laffort P, Van Gemert LJ (1990) Standardized human olfactory thresholds. Oxford University Press, Oxford, p 176

    Google Scholar 

  • Dolzer J, Fischer K, Stengl M (2003) Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. J Exp Biol 206:1575–1588

    Article  PubMed  Google Scholar 

  • Dratz EA, Hargrave PA (1983) The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem Sci 8:128

    Article  CAS  Google Scholar 

  • Frings S, Lindemann B (1988) Odorant response of isolated olfactory receptor cells is blocked by amiloride. J Membrane Biol 105:233–243

    Article  CAS  Google Scholar 

  • Gawalek P, Stengl M (2018) The Diacylglycerol Analogs OAG and DOG Differentially Affect Primary Events of Pheromone Transduction in the Hawkmoth Manduca sexta in a Zeitgebertime-Dependent Manner Apparently Targeting TRP Channels. Front Cell Neurosci 12:218. https://doi.org/10.3389/fncel.2018.00218

    Article  PubMed  PubMed Central  Google Scholar 

  • Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi II. Morphometric analysis. Cell Tissue Res 235:35–42

    Article  CAS  PubMed  Google Scholar 

  • Heinbockel T, Kaissling KE (1996) Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and (+)-linalool. J Insect Physiol 42:565–578

    Article  CAS  Google Scholar 

  • Henderson SR, Reuss H, Hardie RC (2000) Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J Physiol 524:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland.

    Google Scholar 

  • Hopf TA, Morinaga S, Ihara S, Touhara K, Marks DS, Benton R (2015) Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat Commun 6:6077

    Article  CAS  PubMed  Google Scholar 

  • Jacquin-Joly E, Francois MC, Burnet M, Lucas P, Bourrat F, Maida R (2002) Expression pattern in the antennae of the newly isolated lepidopteran Gq protein alpha subunit cDNA. Eur J Biochem 269:2133–2142

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci U S A 105:10995–11000

    Google Scholar 

  • Jones W (2013) Olfactory carbon dioxide detection by insects and other animals. Mol Cells 35:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A 108:8821–8825

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaissling KE (1971) Insect olfaction. In: Beidler LM (ed) Handbook of sensory physiology IV, 1. Springer, Heidelberg, pp 351–431

    Google Scholar 

  • Kaissling KE (1974) Sensory transduction in insect olfactory receptors. In: Jaenicke L (ed) 25. Mosbacher Coll Ges Biolog Chemie, biochemistry of sensory functions. Springer, Berlin/Heidelberg/New York, pp 243–273

    Chapter  Google Scholar 

  • Kaissling KE (1977) Structures of odour molecules and multiple activities of receptor cells. In: Le Magnen J, MacLeod P (eds) Olfaction and taste VI. Inf. Retrieval, London, pp 9–16

    Google Scholar 

  • Kaissling KE (1980) Action of chemicals, including (+)trans Permethrin and DDT, on insect olfactory receptors. In: Insect neurobiology and pesticide action (Neurotox 79). Soc Chem Industry, London, pp 351–358

    Google Scholar 

  • Kaissling KE (1986) Chemo-electrical transduction in insect olfactory receptors. Ann Rev Neurosci 9:21–45

    Article  Google Scholar 

  • Kaissling KE (1987) In: Colbow K (ed) RH Wright lectures on insect olfaction. Simon Fraser University, Burnaby, p 190

    Google Scholar 

  • Kaissling KE (1995) Single unit and electroantennogram recordings in insect olfactory organs. In: Spielman AI, Brand JG (eds) Experimental cell biology of taste and olfaction: current techniques and protocols. CRC Press, Boca Raton/New York/Tokyo, pp 361–386

    Google Scholar 

  • Kaissling KE (1997) Pheromone-controlled anemotaxis in moths. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhaeuser, Basel, pp 343–374

    Chapter  Google Scholar 

  • Kaissling KE (1998) Flux detectors versus concentration detectors: two types of chemoreceptors. Chem Senses 23:99–111

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26:125–150

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE (2009a) The sensitivity of the insect nose: the example of Bombyx mori. In: Marco S, Gutierrez-Galvez A (eds) Biologically inspired signal processing for chemical sensing. SCI 188. Springer, Heidelberg, pp 45–52

    Chapter  Google Scholar 

  • Kaissling KE (2009b) Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A 195:895–922

    Article  CAS  Google Scholar 

  • Kaissling KE (2013) Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors. J Comp Physiol A 199:879–896

    Article  CAS  Google Scholar 

  • Kaissling KE (2014) Pheromone reception in insects (the example of silk moths). In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press/Taylor & Francis, Boca Raton/London/New York, pp 99–146

    Chapter  Google Scholar 

  • Kaissling KE, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwiss 57:23–28

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organisation. In: Satelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland Biomedical Press, New York, pp 261–282

    Google Scholar 

  • Kaissling KE, Kasang G, Bestmann HJ, Stransky W, Vostrowsky O (1978) A new pheromone of the silkworm moth Bombyx mori. Sensory pathway and behavioral effect. Naturwiss 65:382–384

    Article  CAS  Google Scholar 

  • Kaissling KE, Zack-Strausfeld C, Rumbo ER (1987) Adaptation processes in insect olfactory receptors. Mechanisms and behavioral significance. Olfaction and taste IX. Ann N Y Acad Sci 510:104–112

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE, Meng LZ, Bestmann HJ (1989) Responses of bombykol receptor cells to (Z,E)-4,6-hexadecadiene and linalool. J Comp Physiol A 165:147–154

    Article  Google Scholar 

  • Kaissling KE, Keil TA, Williams L (1991) Pheromone stimulation in perfused olfactory hairs of Antheraea polyphemus. J Insect Physiol 37:71–78

    Article  Google Scholar 

  • Kanaujia S, Kaissling KE (1985) Interactions of pheromone with moth antennae: adsorption, desorption and transport. J Insect Physiol 31:71–81

    Article  CAS  Google Scholar 

  • Kasang G (1968) Tritium labeling of the sex attractant Bombykol. Z Naturforsch 23b:1331–1335

    Article  Google Scholar 

  • Kasang G, Nicholls M, von Proff L (1989a) Sex pheromone conversion and degradation in antennae of the male silkworm moth Bombyx mori L. Experientia 45:81–87

    Article  CAS  Google Scholar 

  • Kasang G, Nicholls M, Keil TA, Kanaujia S (1989b) Enzymatic conversion of sex pheromones in olfactory hairs of the male silkworm moth Antheraea polyphemus. Z Naturforsch 44c:920–926

    Article  Google Scholar 

  • Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200

    Article  CAS  PubMed  Google Scholar 

  • Keil TA (1984) Reconstruction and morphometry of silkmoth olfactory hairs: a comparative study of sensilla trichodea on the antennae of male Antheraea polyphemus and Antheraea pernyi (Insecta, Lepidoptera). Zoomorphology 104:147–156

    Article  Google Scholar 

  • Keil TA (1989) Fine structure of the pheromone-sensitive sensilla on the antenna of the Hawkmoth, Manduca sexta. Tiss Cell 21:139–151

    Article  CAS  Google Scholar 

  • Keil TA (1999) Morphologie and development of the peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer, Berlin/Heidelberg, pp 5–47

    Chapter  Google Scholar 

  • Kirschfeld K (1966) Discrete and graded receptor potentials in the compound eye of the fly (Musca). In: The functional organization of the compound eye. Proceedings of the international symposium. Pergamon Press, Oxford, pp 291–307

    Google Scholar 

  • Klein U, Keil TA (1984) Dendritic membrane from insect olfactory hairs: Isolation method and electron microscopic observations. Cell Mol Neurobiol 4:385–396

    Article  CAS  PubMed  Google Scholar 

  • Kodadová B, Kaissling KE (1996) Effects of temperature on responses of silkmoth olfactory receptor neurones to pheromone can be simulated by modulation of resting cell membrane resistances. J Comp Physiol 179:15–27

    Google Scholar 

  • Laue M, Maida R, Redkozubov A (1997) G-protein activation, identification and immunolocalization in pheromone-sensitive sensilla trichodea of moths. Cell Tissue Res 288:149–158

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102:5386–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10:e1004600. https://doi.org/10.1371/journal.pgen.1004600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillywhite PG (1977) Single photon signals and transduction in an insect eye. J Comp Physiol 122:189–200

    Article  Google Scholar 

  • Lowe G, Gold GH (1995) Olfactory transduction is intrinsically noisy. Proc Natl Acad Sci U S A 92:7864–7868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JW, Barry PH (1989) Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophys J 55:755–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maida R, Redkozubov A, Ziegelberger G (2000) Identification of PLCß and PKC in pheromone receptor neurons of Antheraea polyphemus. Neuroreport 11:1773–1776

    Article  CAS  PubMed  Google Scholar 

  • Maue RA, Dionne VE (1987) Patch-clamp studies of isolated mouse olfactory receptor neurons. J Gen Physiol 90:95–125

    Article  CAS  PubMed  Google Scholar 

  • Menini A, Picco C, Firestein S (1995) Quantal-like current fluctuations induced by odorants in olfactory receptor cells. Nature 373:435–437

    Article  CAS  PubMed  Google Scholar 

  • Minor AV, Kaissling KE (2003) Cell responses to single pheromone molecules may reflect the activation kinetics of olfactory receptor molecules. J Comp Physiol A 189:221–230

    CAS  Google Scholar 

  • Moulton DG (1977) Minimum odorant concentrations detectable by the dog and their implications for olfactory receptor sensitivity. In: Müller-Schwarze D, Mozell MM (eds) Chemical signals in vertebrates. Plenum Press, New York, pp 455–464

    Chapter  Google Scholar 

  • Mukunda L, Miazzi F, Kaltofen S, Hansson BS, Wicher D (2014) Calmodulin modulates insect odorant receptor function. Cell Calcium 55:324–333

    Article  CAS  Google Scholar 

  • Nakagawa T, Touhara K (2013) Extracellular modulation of the silkmoth sex pheromone receptor activity by cyclic nucleotides. PLoS One 8:e63774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19:284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K (2012) Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS One 7:e32372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature 260:779–802

    Article  Google Scholar 

  • Neuhaus W (1953) Über die Riechschärfe des Hundes für Fettsäuren. Z vergl Physiol 35:527–552

    Google Scholar 

  • Nolte A, Funk N, Mukunda L, Gawalek P, Werckenthin A, Hansson B, Wicher D, Stengl M (2013) In situ tip-recordings found no evidence for an Orco-based ionotropic mechanism of pheromone-transduction in Manduca sexta. PLoS One 8:e62648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolte A, Gawalek P, Koerte S, Wei HY, Schumann R, Werckenthin A, Krieger J, Stengl M (2016) No evidence for ionotropic pheromone transduction in the hawkmoth Manduca sexta. PLoS One 11:e0166060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pézier A, Acquistapace A, Renou M, Rospars J-P, Lucas P (2007) Ca2+ Stabilizes the Membrane Potential of Moth Olfactory Receptor Neurons at Rest and Is Essential for Their Fast Repolarization. Chem Senses 32:305–317

    Article  PubMed  Google Scholar 

  • Pézier A, Grauso M, Acquistapace A, Monsempes C, Rospars JP, Lucas P (2010) Calcium activates a chloride conductance likely involved in olfactory receptor neuron repolarisation in the moth Spodoptera littoralis. J Neurosci 30:6323–6333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pophof B (1998) Inhibitors of sensillar esterase reversibly block the responses of moth pheromone receptor cells. J Comp Physiol A 183:153–164

    Article  CAS  Google Scholar 

  • Pophof B, Van der Goes van Naters W (2002) Activation and inhibition of the transduction process in silkmoth olfactory receptor neurons. Chem Senses 27:435–443

    Article  CAS  PubMed  Google Scholar 

  • Pophof B, Gebauer T, Ziegelberger G (2000) Decyl-thio-trifluoropropanone, a competitive inhibitor of moth pheromone receptors. J Comp Physiol A 186:315–323

    Article  CAS  PubMed  Google Scholar 

  • Redkozubov A (1995) High electrical resistance of the bombykol cell in an olfactory sensillum of Bombyx mori: voltage- and current-clamp analysis. J Insect Physiol 41:451–455

    Article  CAS  Google Scholar 

  • Redkozubov A (1996) Protein kinase C is involved in the activation of receptor neurons in the olfactory sensilla of the gypsy moth. Sens Syst 10:307–312

    Google Scholar 

  • Redkozubov A (2000a) Elementary receptor currents elicited by a single pheromone molecule exhibit quantal composition. Pfluegers Arch-Eur J Physiol 440:896–901

    Article  CAS  Google Scholar 

  • Redkozubov A (2000b) Guanosine 3´,5´-cyclic monophosphate reduces the response of the moth’s olfactory receptor neuron to pheromone. Chem Senses 25:381–385

    Article  CAS  PubMed  Google Scholar 

  • Renou M, Barthier A, Guerrero A (2004) Disruption of responses to pheromone by (Z)-11-hexadecenyl trifluoromethyl ketone, an analogue of the pheromone, in the cabbage army worm Mamestra brassicae. Pest Manag Sci 58:839–844

    Article  CAS  Google Scholar 

  • Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272:14792–14799

    Article  CAS  PubMed  Google Scholar 

  • Rogers ME, Krieger J, Vogt RG (2001) Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. J Neurobiol 49:47–61

    Article  CAS  PubMed  Google Scholar 

  • Ronnett GV, Moon C (2002) G proteins and olfactory signal transduction. Ann Rev 64:189–222

    CAS  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006

    Article  CAS  PubMed  Google Scholar 

  • Schneider D, Lacher V, Kaissling KE (1964) Die Reaktionsweise und das Reaktionsspektrum von Riechzellen bei Antheraea pernyi (Lepidoptera, Saturniidae). Z vergl Physiol 48:632–662

    Article  Google Scholar 

  • Scholes J (1965) Discontinuity of the excitation process in locust visual cells. Cold Spring Harbour Symp Quant Biol 30:517–527

    Article  CAS  Google Scholar 

  • Silbering AF, Benton R (2010) Ionotropic and metabotropic mechanisms in chemoreception: ‘chance or design’? EMBO Rep 11:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stange G, Kaissling KE (1995) The site of action of general anaesthetics in insect olfactory receptor neurons. Chem Senses 20:421–432

    Article  CAS  PubMed  Google Scholar 

  • Stange G, Rowe S (1999) Carbon-dioxide sensing structures in terrestrial arthropods. Micros Res Tech 47:416–427

    Article  CAS  Google Scholar 

  • Starrat AN, Dahm KH, Allen N, Hildebrand JG, Payne TL, Röller H (1979) Bombykal, a sex pheromone of the sphinx moth Manduca sexta. Z Naturforsch 34C:9–12

    Article  Google Scholar 

  • Steinbrecht RA, Kasang G (1972) Capture and conveyance of odour molecules in an insect olfactory receptor. In: Schneider D (ed) Olfaction and taste IV. Wiss Verlagsges, Stuttgart, pp 193–199

    Google Scholar 

  • Stengl M, Funk NW (2013) The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A 199:897–909

    Article  CAS  Google Scholar 

  • Stengl M (2017) Chemosensory transduction in arthropods. In: Byrne JH (ed) Oxford Handbooks Online. The Oxford Handbook of Invertebrate Neurobiology. Oxford University Press, pp 1–42. https://doi.org/10.1093/oxfordhb/9780190456757.013.15

  • Stühmer W, Roberts WM, Almers W (1985) The loose patch clamp. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum Press, New York, pp 123–132

    Google Scholar 

  • Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith DS (eds) Insect biology in the future. Academic, New York, pp 735–763

    Chapter  Google Scholar 

  • Trotier D, MacLeod P (1987) The amplification process in olfactory receptor cells. Ann N Y Acad Sci 510:677–679

    Article  Google Scholar 

  • Vermeulen A, Rospars JP (2001) Electrical circuitry of an insect olfactory sensillum. Neurocomputing 29:587–596

    CAS  Google Scholar 

  • Vijverberg HPM, van der Zalm JM, van den Bercken J (1982) Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature (Lond) 295:601–603

    Article  CAS  Google Scholar 

  • Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, London/San Diego, pp 391–446

    Chapter  Google Scholar 

  • Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology, Endocrinology, vol 3. Elsevier, London, pp 753–804

    Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature (Lond) 293:161–163

    Article  CAS  Google Scholar 

  • Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a pheromone degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci U S A 82:8827–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicher D (2015) Olfactory signaling in insects. In: Glatz R (ed) Progress in molecular biology and translational science, vol 130. Elsevier, New York, pp 37–54

    Google Scholar 

  • Wicher D, Schaefer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Wicher D, Grosse-Wilde E (2017) Chemoreceptors in Evolution. In: Kaas J (ed) Evolution of Nervous Systems 2e. Elsevier, Oxford, pp 245–255

    Chapter  Google Scholar 

  • Zack C (1979) Sensory adaptation in the sex pheromone receptor cells of saturniid moths. Diss Fak Biol LMU München:1–99

    Google Scholar 

  • Zack-Strausfeld C, Kaissling KE (1986) Localized adaptation processes in olfactory sensilla of Saturniid moths. Chem Senses 11:499–512

    Article  Google Scholar 

  • Ziegelberger G, Van den Berg MJ, Kaissling KE, Klumpp S, Schultz JE (1990) Cyclic nucleotide levels and guanylate cyclase activity in pheromone-sensitive antennae of the silkmoths Antheraea polyphemus and Bombyx mori. J Neurosci 10:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziesmann J, Valterova I, Haberkorn K, De Brito Sanchez MG, Kaissling KE (2000) Chemicals in laboratory room air stimulate olfactory neurons of female Bombyx mori. Chem Senses 25:31–37

    Article  CAS  PubMed  Google Scholar 

  • Zufall F, Hatt H (1991) Dual activation of sex pheromone-dependent ion channel from insect olfactory dendrites by protein kinase C activators and cyclic GMP. Proc Natl Acad Sci U S A 88:8520–8524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zufall F, Hatt H, Keil TA (1991) A calcium-activated nonspecific cation channel from olfactory receptor neurons of the silkmoth Antheraea polyphemus. J Exp Biol 161:455–468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author is grateful to Wynand M. van der Goes van Naters, Cardiff, and Uwe Koch, Kaiserslautern, for valuable suggestions and comments to earlier versions of the manuscript. Special thanks are directed to Jean-François Picimbon, Jinan, for most thoughtful editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Ernst Kaissling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaissling, KE. (2019). Responses of Insect Olfactory Neurons to Single Pheromone Molecules. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_1

Download citation

Publish with us

Policies and ethics