Skip to main content
Log in

Diversity of intersegmental auditory neurons in a bush cricket

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Various auditory interneurons of the duetting bush cricket Ancistrura nigrovittata with axons ascending to the brain are presented. In this species, more intersegmental sound-activated neurons have been identified than in any other bush cricket so far, among them a new type of ascending neuron with posterior soma in the prothoracic ganglion (AN4). These interneurons show not only morphological differences in the prothoracic ganglion and the brain, but also respond differently to carrier frequencies, intensity and direction. As a set of neurons, they show graded differences for all of these parameters. A response type not described among intersegmental neurons of crickets and other bush crickets so far is found in the AN3 neuron with a tonic response, broad frequency tuning and little directional dependence. All neurons, with the exception of AN3, respond in a relatively similar manner to the temporal patterns of the male song: phasically to high syllable repetitions and rhythmically to low syllable repetitions. The strongest coupling to the temporal pattern is found in TN1. In contrast to behavior the neuronal responses depend little on syllable duration. AN4, AN5 and TN1 respond well to the female song. AN4 (at higher intensities) and TN1 respond well to a complete duet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AN:

Ascending neuron

DN:

Descending neuron

SD:

Standard deviation

SE:

Standard error

TN:

T-shaped neuron

References

  • Atkins G, Henley J, Handysides R, Stout J (1992) Evaluation of the behavioral roles of ascending auditory interneurons in calling song phonotaxis by the female cricket Acheta domesticus. J Comp Physiol A 170:363–372

    Article  Google Scholar 

  • Atkins G, Pollack GS (1986) Age-dependent occurrence of an ascending axon on the omega neuron of the cricket, Teleogryllus oceanicus. J Comp Neurol 243:527–534

    Article  PubMed  CAS  Google Scholar 

  • Atkins G, Pollack GS (1987) Response properties of prothoracic, interganglionic, sound-activated interneurons in the cricket Teleogryllus oceanicus. J Comp Physiol A 161:681–694

    Article  Google Scholar 

  • Batschelet E (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. Amer Inst Biol Sci Washington DC

  • Boyan GS (1979) Directional responses to sound in the central nervous system of the cricket Teleogryllus commodus Orthoptera: Gryllidae. I. Ascending interneurones. J Comp Physiol 130:137–150

    Article  Google Scholar 

  • Bush SL, Schul J (2006) Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. J Comp Physiol A 192:113–121

    Article  Google Scholar 

  • Dobler S, Heller K-G, Helversen O von (1994a) Song pattern recognition and an auditory time window in the female bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol A 175:67–74

    Google Scholar 

  • Dobler S, Stumpner A, Heller K-G (1994b) Sex-specific spectral tuning for the partner’s song in the duetting bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol A 175:303–310

    Google Scholar 

  • Faure PA, Hoy RR (2000a) The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera; Tettigoniidae). J Comp Physiol A 186:129–142

    Article  CAS  Google Scholar 

  • Faure PA, Hoy RR (2000b) Auditory symmetry analysis. J Exp Biol 203:3209–3223

    CAS  Google Scholar 

  • Fielden A (1960) Transmission through the last abdominal ganglion of the dragonfly nymph, Anax imperator. J Exp Biol 37:832–844

    Google Scholar 

  • Franz A (2004) Neuronale Variabilität und Korrelationen als begrenzende Faktoren für die Verarbeitung und Kodierung zeitlich strukturierter akustischer Signale. Mensch und Buch Verlag, Berlin

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. Chicago University Press, Chicago

    Google Scholar 

  • Gleich O, Klump GM (1995) Temporal modulation transfer functions in the European starling (Sturnus vulgaris): Responses of auditory nerve fibres. Hear Res 82:81–92

    Article  PubMed  CAS  Google Scholar 

  • Hardt M (1988) Zur Phonotaxis von Laubheuschrecken: Eine vergleichend verhaltensphysiologisch/ neuroanatomische Untersuchung. Dissertation, Universität Bochum

  • Hedwig B, Knepper M (1992) NEUROLAB, a comprehensive program for the analysis of neurophysiological and behavioral data. J Neurosci Methods 45:135–148

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Jatho M, Kalmring K (1993) Acoustic transmission characteristics of the tympanal tracheae of bushcrickets (Tettigoniidae). II: comparative studies of the tracheae of seven species. J Acoust Soc Am 93:3481–3489

    Article  Google Scholar 

  • Heller KG, Helversen D von (1986) Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response and matching male sensory time window. Behav Ecol Sociobiol 18:189–198

    Article  Google Scholar 

  • Helversen D von, Helversen O von (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? J Comp Physiol A 177:767–774

    Article  Google Scholar 

  • Hennig RM (1988) Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. J Comp Physiol A 163:135–143

    Article  PubMed  CAS  Google Scholar 

  • Hennig RM (2003) Acoustic feature extraction by cross-correlation in crickets? J Comp Physiol A 189:589–598

    Article  CAS  Google Scholar 

  • Kalmring K (1975) The afferent auditory pathway in the ventral cord of Locusta migratoria (Acrididae). I. Synaptic connectivity and information processing among the auditory neurons of the ventral cord. J Comp Physiol 104:103–141

    Article  Google Scholar 

  • Lang F, Brandt G, Glahe M (1993) A versatile multichannel acoustic stimulator controlled by a personal computer. In: Elsner N, Heisenberg M (eds), Gene-brain-behaviour. Thieme, Stuttgart, pp A892

  • Lewis DB (1974) The physiology of the tettigoniid ear. III. The response characteristics of the intact ear and some biophysical considerations. J Exp Biol 60:853–859

    PubMed  CAS  Google Scholar 

  • Libersat F, Hoy RR (1991) Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae). J Comp Physiol A 169:507–514

    Article  PubMed  CAS  Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear. J Comp Physiol 71:49–62

    Google Scholar 

  • Michelsen A (1998) Biophysics of sound localization in insects. In: Hoy RR, Popper AN, Fay RR (eds.) Comparative hearing: insects. Springer, Berlin Heidelberg New York, p 18–62

  • Michelsen A, Rohrseitz K, Heller K-G, Stumpner A (1994) A new biophysical method to determine the gain of the acoustic trachea in bushcrickets. J Comp Physiol A 175:145–151

    Article  PubMed  CAS  Google Scholar 

  • Molina J (2004) The effect of photoinactivation of auditory neurons on the prothoracic auditory network in the bushcricket Ancistrura nigrovittata. Cuvillier Verlag, Göttingen

  • Molina J, Stumpner A (2005) Effects of pharmacological treatment and photoinactivation on the directional responses of an insect neuron. J Exp Zool A 303:1085–1103

    Article  Google Scholar 

  • Nabatiyan A, Poulet JFA, de Polavieja GG, Hedwig B (2003) Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. J Neurophysiol 90:2484–2493

    Article  PubMed  CAS  Google Scholar 

  • Nolen T, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994

    Article  PubMed  CAS  Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    PubMed  CAS  Google Scholar 

  • Pollack GS (1994) Synaptic inputs to the omega neuron of the cricket Teleogryllus oceanicus: differences in e.p.s.p. waveforms evoked by low and high sound frequencies. J Comp Physiol A 174:83–89

    Article  Google Scholar 

  • Prier KR, Boyan GS (2000) Synaptic input from serial chordotonal organs onto segmentally homologous interneurons in the grasshopper Schistocerca gregaria. J Insect Physiol 46:297–312

    Article  PubMed  CAS  Google Scholar 

  • Rehbein H (1976) Auditory neurons in the ventral cord of the locust: morphological and functional properties. J Comp Physiol 110:233–250

    Article  Google Scholar 

  • Rheinlaender J (1975) Transmission of acoustic information at three neuronal levels in the auditory system of Decticus verrucivorus (Tettigoniidae, Orthoptera). J Comp Physiol 97:1–53

    Article  Google Scholar 

  • Rheinlaender J, Hardt M, Robinson D (1986) The directional sensitivity of a bushcricket ear: a behavioural and neurophysiological study of Leptophyes punctatissima. Physiol Entomol 11:309–316

    Google Scholar 

  • Rheinlaender J, Kalmring K (1973) Die afferente Hörbahn im Bereich des Zentralnervensystems von Decticus verrucivorus (Tettigoniidae). J Comp Physiol 85:361–410

    Article  Google Scholar 

  • Rheinlaender J, Kalmring K, Popov AV, Rehbein H (1976) Brain projections and information processing of biologically significant sounds by two large ventral-cord neurons of Gryllus bimaculatus DeGeer (Orthoptera, Gryllidae). J Comp Physiol 110:251–269

    Article  Google Scholar 

  • Rheinlaender J, Mörchen A (1979) “Time-intensity trading” in locust auditory interneurons. Nature 281:672–674

    Article  Google Scholar 

  • Rheinlaender J, Römer H (1980) Bilateral coding of sound direction in the CNS of the bushcricket Tettigonia viridissima L. (Orthoptera: Tettigoniidae). J Comp Physiol A140:101–111

    Article  Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122

    Google Scholar 

  • Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol A 161:33–42

    Article  Google Scholar 

  • Römer H, Dronse R (1982) Synaptic mechanisms of monaural and binaural processing in the locust. J Insect Physiol 28:365–370

    Article  Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol 155:249–262

    Article  Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215

    Article  PubMed  Google Scholar 

  • Ronacher B, Stumpner A, Sokoliuk T, Herrmann B (1993) Acoustic communication of grasshopper males after lesions in the thoracic connectives: correlation with the ascending projections of identified auditory neurons. Zool Jb Physiol 97: 199–214

    Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185

    Article  Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis. J Comp Physiol A 163:621–631

    Article  Google Scholar 

  • Schul J (1997) Neuronal basis of phonotactic behaviour in Tettigonia viridissima: processing of behaviourally relevant signals by auditory afferents and thoracic interneurons. J Comp Physiol A 180:573–583

    Article  Google Scholar 

  • Schul J, Schulze W (2001) Phonotaxis during walking and flight: are differences in selectivity due to predation pressure? Naturwissenschaften 88:438–442

    Article  PubMed  CAS  Google Scholar 

  • Schul J, Matt F, Helversen O von (2000) Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field. Proc R Soc Lond B 267:1711–1715

    Article  CAS  Google Scholar 

  • Sickmann T (1996) Vergleichende funktionelle und anatomische Untersuchungen zum Aufbau der Hör- und Vibrationsbahn im thorakalen Bauchmark von Laubheuschrecken. Cuvillier Verlag, Göttingen

  • Staaden M van, Römer H (1998) Evolutionary transition from stretch to hearing organs in ancient grasshoppers. Nature 394:773–776

    Article  Google Scholar 

  • Stiedl O, Stumpner A, Mbungu DN, Atkins G, Stout JF (1997) Morphology and physiology of local auditory interneurons in the prothoracic ganglion of the cricket Acheta domesticus. J Exp Zool 279:43–53

    Article  Google Scholar 

  • Stout JF, Atkins G, Burghardt F (1985) The characterization and possible importance for phonotaxis of `L`-shaped ascending acoustic interneurons in the cricket (Acheta domesticus). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Stuttgart, pp 89–100

  • Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticini). Cell Tissue Res 294:377–386

    Article  PubMed  Google Scholar 

  • Stumpner A (1996a) Tonotopic organization of the hearing organ in a bushcricket: physiological characterization and complete staining of auditory receptor cells. Naturwissenschaften 83:81–84

    CAS  Google Scholar 

  • Stumpner A (1996b) Complete morphology of sound-activated intersegmental interneurons in a bushcricket. In: Elsner N, Schnitzler HU (eds) Brain and evolution. Thieme, Stuttgart, p A167

  • Stumpner A (1997) An auditory interneurone tuned to the male song frequency in the duetting bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 200:1089–1101

    PubMed  Google Scholar 

  • Stumpner A (1998) Picrotoxin eliminates frequency selectivity of an auditory interneuron in a bushcricket. J Neurophysiol 79:2408–2415

    PubMed  CAS  Google Scholar 

  • Stumpner A (1999a) An interneurone of unusual morphology is tuned to the female song frequency in the bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 202:2071–2081

    CAS  Google Scholar 

  • Stumpner A (1999b) Comparison of morphology and physiology of two plurisegmental sound-activated interneurones in a bushcricket. J Comp Physiol A 185:199–205

    Article  Google Scholar 

  • Stumpner A (2002) A species-specific frequency filter through specific inhibition, not specific excitation. J Comp Physiol A 188:239–248

    Article  CAS  Google Scholar 

  • Stumpner A, Heller K-G (1992) Morphological and physiological differences of the auditory system in three related bushcrickets (Orthoptera: Phaneropteridae, Poecilimon). Physiol Entomol 17:73–80

    Google Scholar 

  • Stumpner A, Meyer S (2001) Songs and the function of song elements in four duetting bushcricket species (Ensifera, Phaneropteridae, Barbitistes). J Insect Behav 14:511–534

    Article  Google Scholar 

  • Stumpner A, Ronacher B (1991) Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. I. Morphological and physiological characterization. J Exp Biol 158:391–410

    Google Scholar 

  • Stumpner A, Ronacher B (1994) Neurophysiological aspects of song pattern recognition and sound localization in grasshoppers. Am Zool 34:696–705

    Google Scholar 

  • Triblehorn JD, Yager DD (2002) Implanted electrode recordings from a praying mantis auditory interneuron during flying bat attacks. J Exp Biol 205:307–320

    PubMed  Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol 146:161–173

    Article  Google Scholar 

  • Yager DD (1996) Serially homologous ears perform frequency range fractionation in the praying mantis, Creobroter (Mantodea, Hymenopodidae). J Comp Physiol A 178:463–475

    Article  PubMed  CAS  Google Scholar 

  • Zhantiev RD, Korsunovskaya OS (1983) Structure and functions of two auditory neurons in the bushcricket Tettigonia cantans Fuess. (Orthoptera, Tettigoniidae). Rev Entomol URSS 62:462–469

    Google Scholar 

Download references

Acknowledgments

We thank Klaus-Gerhard Heller and several members of the neurobiology department in Göttingen for help with capturing and rearing Ancistrura. Christian Heck, Matthias Schink and Markus Wölfel helped with morphological and physiological analysis. We thank Reinhard Lakes-Harlan for many discussions and Norbert Elsner for ongoing support. We also thank the referees for many detailed and helpful suggestions. Funded by the DFG Stu 189/1. The experiments comply with the “Principles of animal care”, publication No. 86-23, revised, 1985 of the National Institute of Health, and also with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stumpner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpner, A., Molina, J. Diversity of intersegmental auditory neurons in a bush cricket. J Comp Physiol A 192, 1359–1376 (2006). https://doi.org/10.1007/s00359-006-0164-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0164-z

Keywords

Navigation