Skip to main content

The Cricket Auditory Pathway: Neural Processing of Acoustic Signals

  • Chapter
  • First Online:
The Cricket as a Model Organism

Abstract

The auditory afferents of crickets project from the hearing organs in the front legs toward the auditory neuropil in the prothoracic ganglion. They respond best to either the carrier frequency of the communication signals or to ultrasound, such as occurs in bat echolocation calls. Local interneurons (ON1) and two ascending interneurons (AN1 and AN2) establish the first stage of auditory processing. The recurrent inhibitory connections of ON1 support bilateral auditory contrast enhancement. The ascending neurons forward either spike patterns related to the calling song (AN1) or to ultrasound (AN2) to the brain. The temporal integration by the interneurons (ON1, AN1) of sensory activity in response to cricket-like sound patterns leads to an optimum information transfer at the pulse repetition rate of the song patterns. The temporal structure of song patterns may be further processed in a delay-coincidence-detection circuit of local neurons in the brain, which show selective responses to the pulse rate of the male calling song. Spike bursts in ON1 and AN2 seem to be a salient response in the processing of ultrasound. They can even trigger avoidance steering motor activity whereas the neural link between pattern recognition and phonotaxis is not yet characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkins G, Pollack GS (1987a) Response properties of prothoracic, interganglionic, sound-activated interneurons in the cricket Teleogryllus oceanicus. J Comp Physiol A 161(5):681–693

    Google Scholar 

  • Atkins G, Pollack GS (1987b) Correlations between structure, topographic arrangement, and spectral sensitivity of sound-sensitive interneurons in crickets. J Comp Neurol 266(3):398–412

    Article  CAS  PubMed  Google Scholar 

  • Böhm H, Schildberger K (1992) Brain neurones involved in the control of walking in the cricket Gryllus bimaculatus. J Exp Biol 166(1):113–130

    Google Scholar 

  • Boyan G, Williams J (1981) Descending interneurones in the brain of the cricket. Naturwissenschaften 68(9):486–497

    Article  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1989) Integration of ultrasound and flight inputs on descending neurons in the cricket brain. J Exp Biol 145(1):157–171

    CAS  PubMed  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1990) Ultrasound sensitive neurons in the cricket brain. J Comp Physiol A 166(5):651–662

    Article  CAS  PubMed  Google Scholar 

  • Doherty JA (1985) Trade-off phenomena in calling song recognition and phonotaxis in the cricket, Gryllus bimaculatus (Orthoptera, Gryllidae). J Comp Physiol A 156(6):787–801

    Article  Google Scholar 

  • Edwards CJ, Leary CJ, Rose GJ (2007) Counting on inhibition and rate-dependent excitation in the auditory system. J Neurosci 27(49):11392–13384

    Article  Google Scholar 

  • Faulkes Z, Pollack GS (2000) Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus). J Neurophysiol 84:1247–1255

    CAS  PubMed  Google Scholar 

  • Hedwig B, Poulet JFA (2004) Complex auditory behaviour emerges from simple reactive steering. Nature 430(7001):781–785

    Article  CAS  PubMed  Google Scholar 

  • Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 115–129

    Chapter  Google Scholar 

  • Hutchings M, Lewis B (1984) The role of two-tone suppression in song coding by ventral cord neurones in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol A 154:103–112

    Article  Google Scholar 

  • Imaizumi K, Pollack GS (1999) Neural coding of sound frequency by cricket auditory receptors. J Neurosci 19(4):1508–1516

    CAS  PubMed  Google Scholar 

  • Imaizumi K, Pollack GS (2005) Central projections of auditory receptor neurons of crickets. J Comp Neurol 493(3):439–447

    Article  PubMed  Google Scholar 

  • Kostarakos K, Hedwig B (2012) Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. J Neurosci 32(28):9601–9612

    Article  CAS  PubMed  Google Scholar 

  • Libersat F, Murray JA, Hoy RR (1994) Frequency as a releaser in the courtship song of two crickets, Gryllus bimaculatus (de Geer) and Teleogryllus oceanicus. J Comp Physiol A 174:485–494

    Article  CAS  PubMed  Google Scholar 

  • Marsat G, Pollack GS (2004) Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. J Neurophysiol 92:939–948

    Google Scholar 

  • Marsat G, Pollack GS (2005) Effect of the temporal pattern of contralateral inhibition on sound localization cues. J Neurosci 25:6137–6144

    Article  CAS  PubMed  Google Scholar 

  • Marsat G, Pollack GS (2006) A behavioral role for feature detection by sensory bursts. J Neurosci 26(41):10542–10547

    Article  CAS  PubMed  Google Scholar 

  • Marsat G, Pollack GS (2007) Efficient inhibition of bursts by bursts in the auditory system of crickets. J Comp Physiol A 193:625–633

    Article  CAS  Google Scholar 

  • Meckenhäuser G, Hennig RM, Nawrot MP (2013) Critical song features for auditory pattern recognition in crickets. PLOS One. doi:10.1371/journal.pone.0055349

    PubMed  PubMed Central  Google Scholar 

  • Nolen TA, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994

    Article  CAS  PubMed  Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204(4391):429–432

    Article  CAS  PubMed  Google Scholar 

  • Pollack GS, Hoy R (1981) Phonotaxis to individual rhythmic components of a complex cricket calling song. J Insect Physiol 27:41–45

    Article  Google Scholar 

  • Poulet JFA, Hedwig B (2005) Auditory orientation in crickets: pattern recognition controls reactive steering. Proc Natl Acad Sci 102(43):15665–15669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose GJ, Leary CJ, Edwards CJ (2011) Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning. J Comp Physiol A 197:97–108

    Article  Google Scholar 

  • Sabourin P, Pollack GS (2009) Behaviorally relevant burst coding in primary sensory neurons. J Neurophysiol 102:1086–1091

    Article  PubMed  Google Scholar 

  • Sabourin P, Pollack GS (2010) Temporal coding by populations of auditory receptor neurons. J Neurophysiol 103:1614–1621

    Article  PubMed  Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155(2):171–185

    Article  Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis I. Influence of hyperpolarization of identified neurons on sound localization. J Comp Physiol A 163(5):621–631

    Article  Google Scholar 

  • Schöneich S, Hedwig B (2010) Hyperacute directional hearing and phonotactic steering in the cricket (Gryllus bimaculatus deGeer). PLoS One 5(12):e15141

    Article  PubMed  PubMed Central  Google Scholar 

  • Selverston AI, Kleindienst H-U, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by photoinactivation. J Neurosci 5(5):1283–1292

    CAS  PubMed  Google Scholar 

  • Staudacher E (1988) Distribution and morphology of descending brain neurons in the cricket Gryllus bimaculatus. Cell Tissue Res 294(1):187–202

    Article  Google Scholar 

  • Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, New York, pp 310–339

    Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol A 146(2):161–173

    Article  Google Scholar 

  • Zorovic M, Hedwig B (2011) Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. J Neurophysiol 105(5):2181–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorovic M, Hedwig B (2013) Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking. J Comp Physiol A 199:25–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald S. Pollack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Pollack, G.S., Hedwig, B. (2017). The Cricket Auditory Pathway: Neural Processing of Acoustic Signals. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_11

Download citation

Publish with us

Policies and ethics