Skip to main content
Log in

Peripheral electrosensory imaging by weakly electric fish

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Different species have developed different solutions to the problem of constructing a representation of the environment from sensory images projected onto sensory surfaces. Comprehension of how these images are formed is an essential first step in understanding the representation of external reality by a given sensory system. Modeling of the electrical sensory images of objects began with the discovery of electroreception and continues to provide general insights into the mechanisms of imaging. Progress in electric image research has made it possible to establish the physical basis of electric imaging, as well as methods to accurately predict the electric images of objects alone and as a part of a natural electric scene. In this review, we show the following. (1) The internal low resistance of the fish’s body shapes the image in two different ways: by funneling the current generated by the electric organ to the sensory surface, it increases the fields rostrally, thus enhancing the perturbation produced by nearby objects; and by increasing the projected image. (2) The electric fish’s self-generated currents are modified by capacitive objects in a distinctive manner. These modulations can be detected by different receptor types, yielding the possibility of “electric color.” (3) The effects of different objects in a scene interact with each other, generating an image that is different from the simple addition of the images of individual objects, thus causing strong contextual effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

EOD :

Electric organ discharge

LEOD :

Local electric organ discharge

P/N :

Positive-to-negative peak ratio

PP :

Peak-to-peak amplitude

References

  • Aguilera PA, Caputi AA (2003) Electroreception in G.carapo: detection of changes in reafferent waveforms. J Exp Biol 206:989–998

    Article  PubMed  Google Scholar 

  • Aguilera PA, Castelló ME, Caputi AA (2001) Electroreception in Gymnotus carapo: differences between self-generated and conspecific-generated signal carriers. J Exp Biol 204:185–198

    PubMed  CAS  Google Scholar 

  • Aloimonos Y, Rosenfeld A (1992) Computer vision. Science 253:1249–1256

    Article  Google Scholar 

  • Assad C (1997) Electric field maps and boundary element simulations of electrolocation in weakly electric fish. PhD Thesis. California Institute of Technology, Pasadena, California

  • Assad C, Rasnow B, Stoddard PK (1999) Electric organ discharges and electric images during electrolocation. J Exp Biol 202:1185–1193

    PubMed  CAS  Google Scholar 

  • Bacher M (1983) A new method for the simulation of electric field generated by electric fish and their distortion by objects. Biol Cybern 47:51–58

    PubMed  CAS  Google Scholar 

  • Bastian J (1976) Frequency response characteristics of electroreceptors in weakly electric fish (Gymnotoidei) with a pulse discharge. J Comp Physiol A 112:165–180

    Article  Google Scholar 

  • Bastian J (1977) Variations in the frequency response of electroreceptors dependent on receptors location in weakly electric fish (Gymnotidei) with a pulse discharge. J Comp Physiol A 121:53–64

    Article  Google Scholar 

  • Bastian J (1986) Electrolocation: behavior, anatomy, and physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 577–612

    Google Scholar 

  • Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229–253

    PubMed  CAS  Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9:1029–1044

    PubMed  CAS  Google Scholar 

  • Bell CC, Caputi A, Grant K, Serrier J (1993) Storage of a sensory pattern by antihebbian synaptic plasticity in an electric fish

  • Bell CC, Bodznick D, Montgomery J, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum like structures. Brain Behav Evol 50:17–31

    Article  PubMed  Google Scholar 

  • Black-Cleworth P (1970) The role of electrical discharges in the non-reproductive social behaviour of Gymnotus carapo. Anim Behav Monogr 3:1–77

    Google Scholar 

  • Budelli R, Caputi AA (2000) The electric image in weakly electric fish: perception of objects of complex impedance. J Exp Biol 203:481–492

    PubMed  CAS  Google Scholar 

  • Budelli R, Caputi AA, Gómez- Sena L, Rother D, Grant K (2002) The electric image in mormyrid fish. J Physiol (Paris) 96:421–430

    Article  CAS  Google Scholar 

  • Caputi AA (1999) The EOD of pulse gymnotiforms: from a single impulse to a complex electromotor pattern. J Exp Biol 202:1229–1241

    PubMed  Google Scholar 

  • Caputi AA (2004) Contributions of electric fish to the understanding reafferent sensory systems. J Physiol (Paris) 98:81–97

    Article  Google Scholar 

  • Caputi AA, Macadar O, Trujillo-Cenóz O (1989) Waveform generation in Gymnotus carapo III. Analysis of the fish body as an electric source. J Comp Physiol A 165:361–370

    Article  Google Scholar 

  • Caputi AA, Macadar O, Trujillo-Cenóz O (1994) Waveform generation in Rhamphichthys rostratus (L) (Teleostei, Gymnotiformes). The electric organ and its spatiotemporal activation pattern. J Comp Physiol A 174:633–642

    Article  Google Scholar 

  • Caputi A, Budelli R (1995) The electric image in weakly electric fish II. A data-based model of waveform generation in Gymnotus carapo. J Comput Neurosci 2:131–147

    Article  PubMed  CAS  Google Scholar 

  • Caputi AA, Budelli R, Grant K, Bell CC (1995) Perception of electric properties of objects by the weakly electric fish Gnathonemus petersii. Soc Neurosci Abstr 21:186

    Google Scholar 

  • Caputi AA, Silva A, Macadar O (1998a) The effect of environmental variables on waveform generation in Brachyhypopomus pinnicaudatus. Brain Behav Evol 52:148–158

    Article  CAS  Google Scholar 

  • Caputi AA, Budelli R, Grant K, Bell CC (1998b) The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. J Exp Biol 201:2115–2128

    CAS  Google Scholar 

  • Caputi AA, Castelló M, Aguilera P, Trujillo-Cenóz O (2002) Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic. J Physiol (Paris) 96:493–505

    Article  Google Scholar 

  • Castelló ME, Aguilera PA, Trujillo-Cenóz O, Caputi AA (2000) Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types. J Exp Biol 203:3279–3287

    PubMed  Google Scholar 

  • Coombs S, New JG, Nelson M (2002) Information-processing demands in electrosensory and mechanosensory lateral line systems. J Physiol (Paris) 96:341–354

    Article  Google Scholar 

  • von der Emde G (1990) Discrimination of objects through electrolocation in weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167:413–421

    Google Scholar 

  • von der Emde G, Bleckmann H (1992) Extreme phase sensitivity of afferents which innervate mormyromast electroreceptors. Naturwissenschaften 79:131–133

    Article  Google Scholar 

  • von der Emde G, Schwarz S (2002) Imaging of objects through active electrolocation in Gnathonemus petersii. J Physiol (Paris) 96:431–444

    Article  Google Scholar 

  • von der Emde G, Schwartz S, Gómez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894

    Article  PubMed  CAS  Google Scholar 

  • Harder W, Schief A, Uhlemann H (1964) Zur Funktion des elektrischen Organs von Gnathonemus petersii (Günther 1862) (Mormyriformes, Teleostei). Z Vergl Physiol 48:302–331

    Google Scholar 

  • Heiligenberg W (1973) Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei). J Comp Physiol 87:137–164

    Article  Google Scholar 

  • Heiligenberg W (1975) Theoretical and experimental approaches to spatial aspects of electrolocation. J Comp Physiol A 103:247–272

    Article  Google Scholar 

  • Heiligenberg W (1977) Principles of electrolocation and jamming avoidance in electric fish: a neuroethological approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Hopkins CD (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish. J Comp Physiol A 111:171–207

    Article  Google Scholar 

  • Hoshimiya N,Shogen K, Matsuo T, Chichibu S (1980) The Apteronotus EOD field: waveform and EOD field simulation. J Comp Physiol A 135:283–290

    Article  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animated sources other than electric organs. In: Fessard A (ed) Handbook of sensory physiology, vol III/3. Electroreceptors and other specialized receptors in lower vertebrates. Springer Berlin Heidelberg New York, pp 148–200

    Google Scholar 

  • Knudsen EI (1975) Spatial aspects of electric fields generated by weakly electric fish. J Comp Physiol 99:103–118

    Article  Google Scholar 

  • Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191

    Google Scholar 

  • Lissmann HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:451–486

    Google Scholar 

  • Meyer JH (1982) Behavioral responses of weakly electric fish to complex impedances. J Comp Physiol A 145:459–470

    Article  Google Scholar 

  • Migliaro A, Caputi AA, Budelli R (2005) Theoretical analysis of pre-receptor image conditioning in weakly electric fish. PloS Comput Biol 1(2):e16

    Article  CAS  Google Scholar 

  • Nelson ME, MacIver MA (1999) Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. J Exp Biol 202:1195–1203

    PubMed  CAS  Google Scholar 

  • Palmer SE (1999) Vision science: photons to phenomenology. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Pereira AC, Centurión V, Caputi AA (2005) Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish. J Exp Biol 208:961–972

    Article  PubMed  Google Scholar 

  • Quinet P (1971) Etude systématique des organes sensoriels de la peau des Mormyriformes (Pisces, Mormyriformes). Ann Mus R Afr Cent Tervuren (Belgium) Ser 8 190:1–97

    Google Scholar 

  • Rasnow B (1996) The effects of simple objects on the electric field of Apteronotus. J Comp Physiol A 178:397–411

    Google Scholar 

  • Rasnow B, Bower JM (1996) The electric organ discharges of the gymnotiform fishes. I. Apteronotus leptorhynchus. J Comp Physiol A 178:383–396

    Google Scholar 

  • Rasnow B, Assad C, Bower JM (1993) Phase and amplitude maps of the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol A 172:481–491

    Article  PubMed  CAS  Google Scholar 

  • Rother D, Migliaro A, Canetti R, Gomez L, Caputi A, Budelli R (2003) Electric images of two low resistance objects in weakly electric fish. Biosystems 71:169–177

    Article  PubMed  Google Scholar 

  • Scheich H, Bullock TH (1974) The role of electroreceptors in the animals life: II. The detection of electric fields from electric organs. In: Fessard A (ed) Handbook of sensory physiology. vol III/3. Electroreceptors and other specialized receptors in lower vertebrates. Springer, Berlin Heidelberg New York, pp 60–124

    Google Scholar 

  • Scheich H, Bullock TH, Hamstra RH (1973) Coding properties of two classes of afferent nerve fibers: high frequency electroreceptors in the electric fish Eigenmannia. J Neurophysiol 36:39–60

    PubMed  CAS  Google Scholar 

  • Sears FW, Zemanski MW (1954) Física general. Aguilar, Madrid

    Google Scholar 

  • Sicardi AE, Caputi AA, Budelli R (2000) Physical basis of electroreception. Physica A 283:86–93

    Article  Google Scholar 

  • Stoddard PK (1999) Predation enhances complexity in the evolution of electric fish signals. Nature 400:254–256

    Article  PubMed  CAS  Google Scholar 

  • Stoddard PK, Rasnow B, Assad C (1999) Electric organ discharges of the gymnotiform fishes. III. Brachyhypopomus. J Comp Physiol A 184:609–630

    Article  PubMed  CAS  Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, London

    Google Scholar 

  • Trujillo-Cenóz (1972) The structural organization of compound eye in insects. In: Fuortes MGF (ed) Physiology of photoreceptor organs. Handbook of sensory physiology. vol VII/2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Watson D, Bastian J (1979) Frequency response characteristics of electroreceptorsin the weakly electric fish Gymnotus carapo. J Comp Physiol A 134:191–202

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Curtis C. Bell and Günther K.H. Zupanc for their helpful comments and the editing of English, as well as Adriana Migliaro for her assistance in the preparation of the figures. This work was partially supported by Fogarty grant # TW 1R03-TW05680, ECOS-sudProject U03B01, PEDECIBA, and a CSIC project from the Universidad de la Repùblica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Caputi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputi, A.A., Budelli, R. Peripheral electrosensory imaging by weakly electric fish. J Comp Physiol A 192, 587–600 (2006). https://doi.org/10.1007/s00359-006-0100-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0100-2

Keywords

Navigation