Skip to main content

Neural Noise in Electrocommunication: From Burden to Benefits

  • Chapter
  • First Online:
Animal Communication and Noise

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 2))

Abstract

Weakly electric fish generate an electric field, called electric organ discharge (EOD), that they use for active electrosensation. This system is used for both object localisation and electrocommunication. Both, objects that are close to the fish and the EODs of other nearby electric fish, modulate the amplitude of a fish’s EOD. Localisation signals are low in amplitude and frequency whereas electrocommunication signals are large amplitude signals with higher frequencies. Electroreceptor neurons are tuned to the frequency of the fish’s own EOD. This tuning, however, is rather broad to allow for the reception of EODs of other fish with different frequencies. This is the basis for electrocommunication. Spike trains of electroreceptor afferents are surprisingly noisy even in the absence of any external signal. From theoretical studies it is known that in populations of spiking neurons such internal noise can improve the information carried about a common input signal in comparison to the noiseless case. In particular, the processing of high-frequency signals benefits from internal noise and the convergence of large populations of neurons. The target neurons of the electroreceptor afferents, the pyramidal cells in the electrosensory lateral line lobe, are organised in three distinct maps of the electroreceptive body surface that are characterised by different receptive field sizes, i.e. the number of afferents that converge on them, and frequency tuning. The properties of these three maps can be understood based on the differential impact of the noise in the electroreceptor afferent spike trains on the processing of the distinct types of signals arising in localisation and communication contexts. Further, the noise in the electroreceptors allows for the discrimination of synchronous spikes from all spikes fired by the afferent population. The level of synchrony seems particularly important for encoding high-frequency communication signals. The electrosensory system is thus a showcase for demonstrating how neural systems actually use noise to enhance processing of signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers HE, Karom M, Smith D (2002) Serotonin and vasopressin interact in the hypothalamus to control communicative behavior. NeuroReport 13:931–933

    CAS  PubMed  Google Scholar 

  • Allee SJ, Markham MR, Salazar VL, Stoddard PK (2008) Opposing actions of 5ht1a and 5ht2-like serotonin receptors on modulations of the electric signal waveform in the electric fish brachyhypopomus pinnicaudatus. Horm Behav 53:481–488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnegard ME, Carlson BA (2005) Electric organ discharge patterns during group hunting by a mormyrid fish. Proc Biol Sci 272:1305–1314

    PubMed Central  PubMed  Google Scholar 

  • Assad C, Rasnow B, Stoddard PK, Bower JM (1998) The electric organ discharges of the gymnotiform fishes: II. Eigenmannia. J. Comp. Physiol. A 183:419–432

    CAS  PubMed  Google Scholar 

  • Ávila-Åkerberg O, Krahe R, Chacron M (2010) Neural heterogeneities and stimulus properties affect burst coding in vivo. Neuroscience 168:300–313

    PubMed  Google Scholar 

  • Babineau D, Lewis J, Longtin A (2007) Spatial acuity and prey detection in weakly electric fish. PLoS Comput Biol 3:e38

    PubMed Central  PubMed  Google Scholar 

  • Babineau D, Longtin A, Lewis JE (2006) Modeling the electric field of weakly electric fish. J Exp Biol 209:3636–3651

    PubMed  Google Scholar 

  • Bacher M (1983) A new method for the simulation of electric fields, generated by electric fish, and their distortions by objects. Biol Cybern 47:51–58

    CAS  PubMed  Google Scholar 

  • Bastian J (1981) Electrolocation I. How electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli. J Comp Physiol A 144:465–479

    Google Scholar 

  • Bastian J (1982) Vision and electroreception: integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. J Comp Physiol A 147:287–297

    Google Scholar 

  • Bastian J (1987a) Electrolocation in the presence of jamming signals: behavior. J Comp Physiol A 161:811–824

    Google Scholar 

  • Bastian J (1987b) Electrolocation in the presence of jamming signals: electroreceptor physiology. J Comp Physiol A 161:825–836

    Google Scholar 

  • Bastian J (1995) Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J Comp Physiol A 176:63–73

    CAS  PubMed  Google Scholar 

  • Bastian J, Chacron MJ, Maler L (2002) Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. J Neurosci 22:4577–4590

    CAS  PubMed  Google Scholar 

  • Bastian J, Chacron MJ, Maler L (2004) Plastic and nonplastic pyramidal cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron 41:767–779

    CAS  PubMed  Google Scholar 

  • Bastian J, Courtright J (1991) Morphological correlates of pyramidal cell adaptation rate in the electrosensory lateral line lobe of weakly electric fish. J Comp Physiol A 168:393–407

    CAS  PubMed  Google Scholar 

  • Bastian J, Schniederjan S, Nguyenkim J (2001) Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus. J Exp Biol 204:1909–1923

    CAS  PubMed  Google Scholar 

  • Bell CC (2002) Evolution of cerebellum-like structures. Brain Behav Evol 59:312–326

    PubMed  Google Scholar 

  • Bell CC, Maler L (2005) Central neuroanatomy of electrosensory systems in fish. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, New York, pp 68–111

    Google Scholar 

  • Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25:2312–2321

    CAS  PubMed  Google Scholar 

  • Benda J, Longtin A, Maler L (2006) A synchronization-desynchronization code for natural communication signals. Neuron 52:347–358

    CAS  PubMed  Google Scholar 

  • Berman N, Maler L (1999) Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. J Exp Biol 202:1243–1253

    PubMed  Google Scholar 

  • Bratton B, Bastian J (1990) Descending control of electroreception: II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe. J Neurosci 10:1241–1253

    CAS  PubMed  Google Scholar 

  • Bullock TH (1969) Species differences in effect of electroreceptor input on electric organ pacemakers and other aspects of behavior in electric fish. Brain Behav Evol 2:85–118

    Google Scholar 

  • Bullock TH, Hamstra RH, Scheich H (1972a) The jamming avoidance response of high frequency electric fish. I. general features. J Comp Physiol A 77:1–22

    Google Scholar 

  • Bullock TH, Hamstra RH, Scheich H (1972b) The jamming avoidance response of high frequency electric fish. II. quantitative aspects. J Comp Physiol A 77:23–48

    Google Scholar 

  • Bulsara AR, Zador A (1996) Threshold detection of wideband signals: a noise-induced maximum in the mutual information. Phys Rev E 54:R2185–R2188

    CAS  Google Scholar 

  • Carr CE, Maler L, Sas E (1982) Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish. J Comp Neurol 211:139–153

    CAS  PubMed  Google Scholar 

  • Chacron MJ, Bastian J (2008) Population coding by electrosensory neurons. J Neurophysiol 99:1825–1835

    PubMed  Google Scholar 

  • Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J (2003) Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature 423:77–81

    CAS  PubMed  Google Scholar 

  • Chacron MJ, Lindner B, Longtin A (2004) Noise shaping by interval correlations increases information transfer. Phys Rev Lett 92:080601

    PubMed  Google Scholar 

  • Chacron MJ, Longtin A, Maler L (2001) Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J Neurosci 21:5328–5343

    CAS  PubMed  Google Scholar 

  • Chacron MJ, Maler L, Bastian J (2005) Electroreceptor neuron dynamics shape information transmission. Nat Neurosci 8:673–678

    CAS  PubMed  Google Scholar 

  • Chacron MJ, Toporikova N, Fortune ES (2009) Differences in the time course of short-term depression across receptive fields are correlated with directional selectivity in electrosensory neurons. J Neurophysiol 102:3270–3279

    PubMed  Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773–782

    CAS  PubMed  Google Scholar 

  • Chen L, House JL, Krahe R, Nelson ME (2005) Modeling signal and background components of electrosensory scenes. J Comp Physiol A 191:331–345

    Google Scholar 

  • Crampton WGR, Albert JS (2006) Evolution of electric signal diversity in gymnotiform fishes. In: Ladich F, Collin SP, Moller P (eds) Communication in fishes, vol 2. Science Publishers, Enfield, pp 647–731

    Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci U S A 81:4586–4590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuddy M, Aubin-North N, Krahe R (2011) Electrocommunication behaviour and non invasively-measured androgen changes following induced seasonal breeding in the weakly electric fish, Apteronotus leptorhynchus. J Exp Biol (in press)

    Google Scholar 

  • Doiron B, Longtin A, Turner RW, Maler L (2001) Model of gamma frequency burst discharge generated by conditional backpropagation. J Neurophysiol 86:1523–1545

    CAS  PubMed  Google Scholar 

  • Dunlap KD (2002) Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Horm Behav 41:187–194

    CAS  PubMed  Google Scholar 

  • Dunlap KD, Jashari D, Pappas KM (2011) Glucocorticoid receptor blockade inhibits brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. Horm Behav 60:275–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunlap KD, Pelczar PL, Knapp R (2002) Social interactions and cortisol treatment increase the production of aggressive electrocommunication signals in male electric fish, Apteronotus leptorhynchus. Horm Behav 42:97–108

    CAS  PubMed  Google Scholar 

  • Dunlap KD, Smith GT, Yekta A (2000) Temperature dependence of electrocommunication signals and their underlying neural rhythms in the weakly electric fish. Apteronotus leptorhynchus. Brain Behav Evol 55:152–162

    CAS  PubMed  Google Scholar 

  • Dunlap KD, Thomas P, Zakon HH (1998) Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish. Apteronotus. J Comp Physiol A 183:77–86

    CAS  PubMed  Google Scholar 

  • Ellis LD, Mehaffey WH, Harvey-Girard E, Turner RW, Maler L, Dunn RJ (2007) SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons. J Neurosci 27:9491–9502

    CAS  PubMed  Google Scholar 

  • Enger PS, Szabo T (1968) Effect of temperature on the discharge rates of the electric organ of some gymnotids. Comp Biochem Physiol 27:625–627

    CAS  PubMed  Google Scholar 

  • Engler G, Zupanc GK (2001) Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish. Apteronotus leptorhynchus. J Comp Physiol A 187:747–756

    CAS  PubMed  Google Scholar 

  • Flecker A, Taphorn D, Lovell J, Feifarek B (1991) Drift of characin larvae, Bryconamericus deuterodonoides, during the dry season from andean piedmont streams. Environ Biol Fishes 31:197–202

    Google Scholar 

  • Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23:11628–11640

    PubMed  Google Scholar 

  • Fugère V, Krahe R (2010) Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus. J Exp Biol 213:225–236

    PubMed  Google Scholar 

  • Fugère V, Ortega H, Krahe R (2011) Electrical signalling of dominance in a wild population of electric fish. Biol Lett 7:197–200

    PubMed Central  PubMed  Google Scholar 

  • Gabbiani F (1996) From stimulus encoding to feature extraction in weakly electric fish. Nature 384:564–567

    CAS  PubMed  Google Scholar 

  • Goodson JL, Bass AH (2001) Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Brain Res Rev 35:246–265

    CAS  PubMed  Google Scholar 

  • Gussin D, Benda J, Maler L (2007) Limits of linear rate coding of dynamic stimuli by electroreceptor afferents. J Neurophysiol 97:2917–2929

    PubMed  Google Scholar 

  • Gutzler SJ, Karom M, Erwin WD, Albers HE (2011) Seasonal regulation of social communication by photoperiod and testosterone: effects of arginine-vasopressin, serotonin and galanin in the medial preoptic area-anterior hypothalamus. Behav Brain Res 216:214–219

    CAS  PubMed  Google Scholar 

  • Hagedorn M, Heiligenberg W (1985) Court and spark: electric signals in the courtship and mating of gymnotid fish. Anim Behav 33:254–265

    Google Scholar 

  • Heiligenberg W (1973) Electrolocation of objects in the electric fish Eigenmannia (Rhamohichthyidae, Gymnotidei). J Comp Physiol A 87:137–164

    Google Scholar 

  • Heiligenberg W (1975) Theoretical and experimental approaches to spatial aspects of electrolocation. J Comp Physiol A 103:247–272

    Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. MIT Press, Cambridge

    Google Scholar 

  • Heiligenberg W, Dye J (1982) Labeling of electroreceptive afferents in a gymnotoid fish by intracellular injection of HRP: the mystery of multiple maps. J Comp Physiol A 148:287–296

    Google Scholar 

  • Heiligenberg W, Metzner W, Wong CJH, Keller CH (1996) Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates. J Comp Physiol A 179:653–674

    CAS  PubMed  Google Scholar 

  • Heiligenberg W, Rose G (1985) Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the Jamming Avoidance Response of Eigenmannia. J Neurosci 5:515–531

    CAS  PubMed  Google Scholar 

  • Hopkins CD (1972) Sex differences in electric signaling in an electric fish. Science 176:1035–1037

    CAS  PubMed  Google Scholar 

  • Hopkins CD (1973) Lightning as background noise for communication among electric fish. Nature 242:268–270

    Google Scholar 

  • Hopkins CD (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish. J Comp Physiol A 111:171–207

    Google Scholar 

  • Hupé GJ, Lewis JE (2008) Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus. J Exp Biol 211:1657–1667

    PubMed  Google Scholar 

  • Hupé GJ, Lewis JE, Benda J (2008) The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish. Apteronotus leptorhynchus. J Physiol Paris 102:164–172

    PubMed  Google Scholar 

  • Jaramillo F, Wiesenfeld K (1998) Mechanoelectrical transduction assisted by brownian motion: a role for noise in the auditory system. Nat Neurosci 1:384–388

    CAS  PubMed  Google Scholar 

  • Kawasaki M (1997) Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Curr Opin Neurobiol 7:473–479

    CAS  PubMed  Google Scholar 

  • Kawasaki M (2005) Physiology of tuberous electrosensory systems. In: Th TB, Hopkins C, Popper A, Fay R (eds) Electroreception. Springer, New York, pp 154–194

    Google Scholar 

  • Keller CH, Zakon HH, Sanchez DY (1986) Evidence for a direct effect of androgens upon electroreceptor tuning. J Comp Physiol A 158:301–310

    CAS  PubMed  Google Scholar 

  • Kelly M, Babineau D, Longtin A, Lewis JE (2008) Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs. Biol Cybern 98:479–490

    PubMed  Google Scholar 

  • Kirschbaum F (1983) Myogenic electric organ precedes the neurogenic organ in apteronotid fish. Naturwissenschaften 70:205–207

    CAS  PubMed  Google Scholar 

  • Kirschbaum F, Westby GW (1975) Development of the electric discharge in mormyrid and gymnotid fish (Marcusenius sp. and Eigenmannia virescens). Experientia 31:1290–1294

    CAS  PubMed  Google Scholar 

  • Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59:734–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knill DC, Pouget A (2004) The bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719

    CAS  PubMed  Google Scholar 

  • Knudsen EI (1974) Behavioral thresholds to electric signals in high frequency electric fish. J Comp Physiol 91:333–353

    Google Scholar 

  • Knudsen EI (1975) Spatial aspects of the electric fields generated by weakly electric fish. J Comp Physiol A 99:103–118

    Google Scholar 

  • Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50:15–33

    CAS  PubMed  Google Scholar 

  • Krahe R, Bastian J, Chacron MJ (2008) Temporal processing across multiple topographic maps in the electrosensory system. J Neurophysiol 100:852–867

    PubMed Central  PubMed  Google Scholar 

  • Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5:13–23

    CAS  PubMed  Google Scholar 

  • Kramer B, Kirschbaum F, Markl H (1981) Species specificity of electric organ discharges is a sympatric group of gymnitoid fish from Manaus (Amazonas). In: Szabo T, Czeh G (eds) Sensory physiology of aquatic lower vertebrates. Akademia Kiado, Budapest

    Google Scholar 

  • Kramer B, Otto B (1991) Waveform discrimination in the electric fish Eigenmannia: sensitivity for the phase differences between the spectral components of a stimulus wave. J Exp Biol 159:1–22

    Google Scholar 

  • Kramer DL (1978) Reproductive seasonality in the fishes of a tropical stream. Ecology 59:976–985

    Google Scholar 

  • Kreiman G, Krahe R, Metzner W, Koch C, Gabbiani F (2000) Robustness and variability of neuronal coding by amplitude-sensitive afferents in the weakly electric fish Eigenmannia. J Neurophysiol 84:189–204

    CAS  PubMed  Google Scholar 

  • Lewis JE, Maler L (2001) Neuronal population codes and the perception of object distance in weakly electric fish. J Neurosci 21:2842–2850

    CAS  PubMed  Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature 304:538–541

    CAS  PubMed  Google Scholar 

  • Lissmann HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:451–486

    Google Scholar 

  • MacIver MA, Sharabash NM, Nelson ME (2001) Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity. J Exp Biol 204:543–557

    CAS  PubMed  Google Scholar 

  • Maler L (2009a) Receptive field organization across multiple electrosensory maps. I. columnar organization and estimation of receptive field size. J Comp Neurol 516:376–393

    Google Scholar 

  • Maler L (2009b) Receptive field organization across multiple electrosensory maps. II. computational analysis of the effects of receptive field size on prey localization. J Comp Neurol 516:394–422

    Google Scholar 

  • Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38

    CAS  PubMed  Google Scholar 

  • Maler L, Sas EKB, Rogers J (1981) The cytology of the posterior lateral line lobe of high-frequency weakly electric fish (Gymnotidae): dendritic differentiation and synaptic specificity in a simple cortex. J Comp Neurol 195:87–139

    CAS  PubMed  Google Scholar 

  • Manwani A, Steinmetz PN, Koch C (2002) The impact of spike timing variability on the signal-encoding performance of neural spiking models. Neural Comput 14:347–367

    PubMed  Google Scholar 

  • Markham MR, Allee SJ, Goldina A, Stoddard PK (2009) Melanocortins regulate the electric waveforms of gymnotiform electric fish. Horm Behav 55:306–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marsat G, Maler L (2010) Neural heterogeneity and efficient population codes for communication signals. J Neurophysiol 104:2543–2555

    PubMed  Google Scholar 

  • Marsat G, Proville RD, Maler L (2009) Transient signals trigger synchronous bursts in an identified population of neurons. J Neurophysiol 102:714–723

    PubMed  Google Scholar 

  • Matsubara J, Heiligenberg W (1978) How well do electric fish electrolocate under jamming? J Comp Physiol A 125:285–290

    Google Scholar 

  • McGregor PK, Westby GM (1992) Discrimination of individually characteristic electric organ discharges by a weakly electric fish. Anim Behav 43:977–986

    Google Scholar 

  • Mehaffey WH, Maler L, Turner RW (2008) Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps. J Neurophysiol 99:2641–2655

    PubMed  Google Scholar 

  • Metzner W, Heiligenberg W (1991) The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain. J Comp Physiol A 169:135–150

    CAS  PubMed  Google Scholar 

  • Metzner W, Juranek J (1997) A sensory brain map for each behavior? Proc Natl Acad Sci U S A 94:14798–14803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzner W, Koch C, Wessel R, Gabbiani F (1998) Feature extraction by burst-like spike patterns in multiple sensory maps. J Neurosci 18:2283–2300

    CAS  PubMed  Google Scholar 

  • Meyer JH, Leong M, Keller CH (1987) Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fish Apteronotus. J Comp Physiol A 160:385–394

    CAS  PubMed  Google Scholar 

  • Middleton J, Longtin A, Benda J, Maler L (2006) The cellular basis for parallel neural transmission of a high-frequency stimulus and its low-frequency envelope. Proc Natl Acad Sci U S A 103:14596–14601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Middleton JW, Longtin A, Benda J, Maler L (2009) Postsynaptic receptive field size and spike threshold determine encoding of high-frequency information via sensitivity to synchronous presynaptic activity. J Neurophysiol 101:1160–1170

    PubMed  Google Scholar 

  • Moller P (1995) Electric fishes: History and Behavior. Chapman and Hall, London

    Google Scholar 

  • Moortgat KT, Keller CH, Bullock TH, Sejnowski TJ (1998) Submicrosecond pacemaker precision is behaviorally modulated: the gymnotiform electromotor pathway. Proc Natl Acad Sci U S A 95:4684–4689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson ME, MacIver MA (1999) Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. J Exp Biol 202:1195–1203

    CAS  PubMed  Google Scholar 

  • Nelson ME, Xu Z, Payne JR (1997) Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish. J Comp Physiol A 181:532–544

    CAS  PubMed  Google Scholar 

  • Partridge BL, Heiligenberg W (1980) Three’s a crowd? Predicting Eigenmannia’s responses to multiple jamming. J Comp Physiol A 136:153–164

    Google Scholar 

  • Pasch B, George AS, Campbell P, Phelps SM (2011) Androgen-dependent male vocal performance influences female preference in neotropical singing mice. Anim Behav 82:177–183

    Google Scholar 

  • Pettigrew JD (1999) Electroreception in monotremes. J Exp Biol 202:1447–1454

    CAS  PubMed  Google Scholar 

  • Pollak GD, Bodenhamer RD (1981) Specialized characteristics of single units in inferior colliculus of mustache bat: frequency representation, tuning, and discharge patterns. J Neurophysiol 46:605–620

    CAS  PubMed  Google Scholar 

  • Pressley J, Troyer TW (2011) The dynamics of integrate-and-fire: mean versus variance modulations and dependence on baseline parameters. Neural Comput 23:1234–1247

    PubMed  Google Scholar 

  • Ramcharitar JU, Tan EW, Fortune ES (2005) Effects of global electrosensory signals on motion processing in the midbrain of Eigenmannia. J Comp Physiol A 191:865–872

    Google Scholar 

  • Ramcharitar JU, Tan EW, Fortune ES (2006) Global electrosensory oscillations enhance directional responses of midbrain neurons in Eigenmannia. J Neurophysiol 96:2319–2326

    CAS  PubMed  Google Scholar 

  • Rasnow B (1986) The effects of simple objects on the electric field of Apteronotus. J Comp Physiol A 178:397–411

    Google Scholar 

  • Rasnow B, Bower JM (1996) The electric organ discharges of the gymnotiform fishes: Apteronotus leptorhynchus. J Comp Physiol A 178:383–396

    Google Scholar 

  • Reardon E, Parisi A, Krahe R, Chapman LJ (2011) Energetic constraints on electric signalling in wave-type eweakly electric fishes. J Exp Biol (in press)

    Google Scholar 

  • Ricci AJ, Kennedy HJ, Crawford AC, Fettiplace R (2005) The transduction channel filter in auditory hair cells. J Neurosci 25:7831–7839

    CAS  PubMed  Google Scholar 

  • Rose G, Heiligenberg W (1985) Temporal hyperacuity in the electric sense of fish. Nature 318:178–180

    CAS  PubMed  Google Scholar 

  • Rose GR (2004) Insights into neural mechanisms and evolution of behaviour from electric fish. Nat Rev Neurosci 5:943–951

    CAS  PubMed  Google Scholar 

  • Salazar VL, Stoddard PK (2008) Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish brachyhypopomus pinnicaudatus. J Exp Biol 211:1012–1020

    PubMed  Google Scholar 

  • Sawtell NB, Bell CC (2008) Adaptive processing in electrosensory systems: links to cerebellar plasticity and learning. J Physiol Paris 102:223–232

    PubMed  Google Scholar 

  • Scheich H, Bullock TH, Hamstra RH (1973) Coding properties of two classes of afferent nerve fibers: high-frequency electroreceptors in the electric fish. Eigenmannia. J Neurophysiol 36:39–60

    CAS  PubMed  Google Scholar 

  • Schief A, von Seelen W, Stagge J, Winkler G (1971) Reception of disrupted signals by the weak electric fish Gnathonemuspetersii. Kybernetik 9:34–43

    CAS  PubMed  Google Scholar 

  • Schnitzler HU, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18:386–394

    Google Scholar 

  • Shumway CA (1989) Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. I. Physiological differences. J Neurosci 9:4388–4399

    CAS  PubMed  Google Scholar 

  • Smith GT, Combs N (2008) Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Horm Behav 54:69–82

    CAS  PubMed  Google Scholar 

  • Stamper SA, Carrera-G E, Tan EW, Fugère V, Krahe R, Fortune ES (2010) Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing. Behav Brain Res 207:368–376

    PubMed  Google Scholar 

  • Stocks NG, Mannella R (2001) Generic noise-enhanced coding in neuronal arrays. Phys Rev E 64:030902

    CAS  Google Scholar 

  • Stoddard PK, Zakon HH, Markham MR, McAnelly L (2006) Regulation and modulation of electric waveforms in gymnotiform electric fish. J Comp Physiol A 192:613–624

    Google Scholar 

  • Stumpner A (2002) A species-specific frequency filter through specific inhibition, not specific excitation. J Comp Physiol A 188:239–248

    CAS  Google Scholar 

  • Suga N (1965) Functional properties of auditory neurones in the cortex of echo-locating bats. J Physiol 181:671–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tallarovic SK, Zakon HH (2005) Electric organ discharge frequency jamming during social interactions in brown ghost knifefish, Apteronotus leptorhynchus. Anim Behav 70:1355–1365

    Google Scholar 

  • Tan EW, Nizar JM, Carrera-G E, Fortune ES (2005) Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish. Eigenmannia virescens. Behav Brain Res 164:83–92

    PubMed  Google Scholar 

  • Telgkamp P, Combs N, Smith GT (2007) Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance. Dev Neurobiol 67:339–354

    CAS  PubMed  Google Scholar 

  • Triefenbach F, Zakon HH (2003) Effects of sex, sensitivity and status on cue recognition in weakly electric fish, Apteronotus leptorhynchus. Anim Behav 65:19–28

    Google Scholar 

  • Triefenbach FA, Zakon HH (2008) Changes in signalling during agonistic interactions between male weakly electric knifefish, Apteronotus leptorhynchus. Anim Behav 75:1263–1272

    Google Scholar 

  • Turner CR, Derylo M, de Santana CD, Alves-Gomes JA, Smith GT (2007) Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (gymnotiformes: Apteronotidae). J Exp Biol 210:4104–4122

    PubMed  Google Scholar 

  • van der Sluijs I, Gray S, Amorim M, Barber I, Candolin U, Hendry A, Krahe R, Maan M, Utne-Palm A, Wagner HJ, Wong B (2011) Communication in troubled waters: responses of fish communication systems to changing environments. Evol Ecol 25:623–640

    Google Scholar 

  • Viancour TA (1979a) Electroreceptors of a weakly electric fish. I. Characterization of tuberous receptor organ tuning. J Comp Physiol A 133:317–325

    Google Scholar 

  • Viancour TA (1979b) Electroreceptors of a weakly electric fish. II. Individually tuned receptor oscillations. J Comp Physiol A 133:327–338

    Google Scholar 

  • Vonderschen K, Chacron MJ (2011) Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish. J Neurophysiol (epub)

    Google Scholar 

  • Watanabe A, Takeda K (1963) The change of discharge frequency by A.C. stimulus in a weak electric fish. J Exp Biol 40:57–66

    Google Scholar 

  • Wessel R, Koch C, Gabbiani F (1996) Coding of time-varying electric field amplitude modulations in a wave-type electric fish. J Neurophysiol 75:2280–2293

    CAS  PubMed  Google Scholar 

  • White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci 23:131–137

    CAS  PubMed  Google Scholar 

  • Zakon H, Oestreich J, Tallarovic S, Triefenbach F (2002) EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. J Physiol Paris 96:451–458

    CAS  PubMed  Google Scholar 

  • Zakon HH (1986a) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 103–156

    Google Scholar 

  • Zakon HH (1986b) The emergence of tuning in newly generated tuberous electroreceptors. J Neurosci 6:3297–3308

    Google Scholar 

  • Zakon HH, Thomas P, Yan HY (1991) Electric organ discharge frequency and plasma sex steroid levels during gonadal recrudescence in a natural population of the weakly electric fish sternopygus macrurus. J Comp Physiol A 169:493–499

    CAS  PubMed  Google Scholar 

  • Zupanc GK, Bullock TH (2005) From electrogenesis to electroreception: an overview. In: Bullock TH, Hopkins CD, Popper AN, R. FR (eds) Electroreception. Springer, New York, pp 5–46

    Google Scholar 

  • Zupanc GKH, SÃrbulescu RF, Nichols A, Ilies I (2006) Electric interactions through chirping behavior in the weakly electric fish. Apteronotus leptorhynchus. J Comp Physiol A 192:159–173

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the editor, Henrik Brumm and the reviewers, John Lewis und Peter McGregor, for their helpful comments to improve our manuscript. Our work was generously supported by our funding agencies, in particular by the BMBF (German Ministry of Education and Research), a Bernstein award for Computational Neuroscience to JB, and a NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery grant to RK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Benda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benda, J., Grewe, J., Krahe, R. (2013). Neural Noise in Electrocommunication: From Burden to Benefits. In: Brumm, H. (eds) Animal Communication and Noise. Animal Signals and Communication, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41494-7_12

Download citation

Publish with us

Policies and ethics