Skip to main content

Advertisement

Log in

High-speed imaging in fluids

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining criteria for high-speed imaging experiments in fluids and to give rule of thumbs for a series of cases. It also considers stroboscopic imaging, triggering and illumination, and scaling issues. It provides guidelines for testing and calibration. Ultra-high-speed imaging at frame rates exceeding 1 million frames per second is reviewed, and the combination of conventional experiments in fluid techniques with high-speed imaging techniques is discussed. The review is concluded with a high-speed imaging chart, which summarizes criteria for temporal scale and spatial scale and which facilitates the selection of a high-speed imaging system for the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • Aldén M, Bood J, Li Z, Richter M (2011) Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc Comb Inst 33:69–97

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using ‘flow focusing’ in microchannels. Appl Phys Lett 82:364

    Article  Google Scholar 

  • Arroyo MP, Hinsch KD (2008) Recent developments of PIV towards 3D measurements. Topics in applied physics, vol 112. Springer, Berlin, pp 127–154

  • Bailey M, Khokhlova V, Sapozhnikov O, Kargl S, Crum L (2003) Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust Phys 49:369–388

    Article  Google Scholar 

  • Bergmann RPHM, van der Meer D, Stijnman MA, Sandtke M, Prosperetti A, Lohse D (2006) Giant Bubble Pinch-Off. Phys Rev Lett 96:154505

    Google Scholar 

  • Bouakaz A, Versluis M, de Jong N (2005) High-speed optical observations of contrast agent destruction. Ultrasound Med Biol 31(3):391–399

    Article  Google Scholar 

  • Boutsioukis C, Verhaagen B, Versluis M, Kastrinakis E, Wesselink PR, van der Sluis LWM (2010) Evaluation of irrigant flow in the root canal using different needle types by an unsteady computational fluid dynamics model. J Endod 36(5):875–879

    Article  Google Scholar 

  • Bremond N, Arora M, Ohl C, Lohse D (2006) Controlled multibubble surface cavitation. Phys Rev Lett 96:224501

    Article  Google Scholar 

  • Brixner B (1992) In: Dewey JM, Racca RG (eds) Proceedings of 20th international congress on high speed photography and photonics, vol 1801. SPIE, Bellingham, WA, pp 52–60

  • Brückner C (1999) Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys Fluids 11:1781–1796

    Article  MathSciNet  Google Scholar 

  • Bruun H (1995) Hot wire anemometry: principles and signal analysis. Oxford Univesity Press, Oxford

    Google Scholar 

  • Chen AU, Basaran OA (2001) A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys Fluids 14:L1–L4

    Article  Google Scholar 

  • Chin CT, Lancée C, Borsboom J, Mastik F, Frijlink ME, de Jong N, Versluis M, Lohse D (2003) Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev Sci Instr 74(12):5026–5034

    Article  Google Scholar 

  • Chomas JE, Dayton PA, May D, Allen J, Klibanov A, Ferrara K (2000) Optical observation of contrast agent destruction. Appl Phys Lett 77(7):1056–1058

    Article  Google Scholar 

  • Cohen I, Brenner MP, Eggers J, Nagel SR (1999) Two fluid drop snap-off problem: experiments and theory. Phys Rev Lett 83:1147

    Article  Google Scholar 

  • Collyer AA, Fisher P (1976) The Kaye effect revisited. Nature 261:682–683

    Article  Google Scholar 

  • Cranz C, Glatzel B (1912) Photographic recording of ballistic abd other rapid phenomena with the aid of the quenched spark. Phys Gesell 14:525–535

    Google Scholar 

  • Crimaldi JP (2008) Planar laser induced fluorescence in aqueous flows. Exp Fluids 44:851–863

    Article  Google Scholar 

  • Dahm WJA, Dimotakis PE (1987) Measurements of entrainment and mixing in turbulent jets. AAIA 25(9):1216–1223

    Article  Google Scholar 

  • Davidson M, Abramowitz M (2002) In: Encyclopedia of imaging science and technology, pp 1106–1141

  • de Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–211

    Article  Google Scholar 

  • de Jong N, Frinking PJA, Bouakaz A, Goorden M, Schourmans T, Xu JP, Mastik F (2000) Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med Biol 26:487–492

    Article  Google Scholar 

  • de Jong J, de Bruin G, Reinten H, van den Berg M, Wijshoff H, Versluis M, Lohse D (2006) Air entrapment in piezo-driven inkjet printheads. J Acoust Soc Am 120:1257–1265

    Google Scholar 

  • Desse JM (2006) Recent contribution in color interferometry and applications to high-speed flows. Opt Laser Eng 44:304–320

    Article  Google Scholar 

  • de Vries AWG, Biesheuvel A, van Wijngaarden L (2002) Notes on the path and wake of a gas bubble rising in pure water. Int J Multiphase Flow 28:1823–1835

    Article  MATH  Google Scholar 

  • Ding T, van der Meer TH, Versluis M, Golombok M, Hult J, Aldén M, Kaminski CF (2000) Proceedings of third international symposium on turbulence, heat and mass transfer, pp 857–864

  • Dong H, Carr WW, Morris JF (2006) Visualization of drop-on-demand inkjet: drop formation and deposition. Rev Sci Instr 77(8):085101

    Article  Google Scholar 

  • Dreyer T, Krauss W, Bauer E, Riedlinger RE (2000) Proceedings of IEEE ultrasonics symposium, vol 2. pp 1239–1242

  • Eckbreth AC (1996) Laser diagnostics for combustion temperature and species, 2nd edn. Gordon and Breach, UK

    Google Scholar 

  • Edgerton HE, Killian JJR (1954) Flash! seeing the unseen by ultra high-speed photography. Boston C. T. Branford Co, Boston, p 41, 130

    Google Scholar 

  • Edgerton HE, Jussim E, Kayafras G, Hayafas G (1987) Stopping time: the photographs of Harold Edgerton. Harry N Abrams Inc, New York, p 45

    Google Scholar 

  • Etoh TG, Poggemenn D, Ruckelshausen A, Theuwissen A, Kreider G, Folkerts HO, Mutoh H, Kondo Y, Maruno H, Takubo K, Soya H, Takehara K, Okinaka T, Takano Y, Reisinger T, Lohmann C (2002) IEEE international solid-state circuits conference digest of technical papers, pp 46–47

  • Etoh TG, Nguyen DH, Dao SVT, Vo CL, Tanaka M, Takehara K, Okinaka T, Kuijk HV, Bosiers J, Lesser M, Ouellete D, Maruyama M, Hayashida T, Arai T (2011) IEEE international solid-state circuits conference digest of technical papers, pp 406–407

  • Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science 300(5618):495–498

    Google Scholar 

  • Gasteuil Y, Shew WL, Gibert M, Chillá F, Castaing B, Pinton JF (2007) Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh-Bénard convection. Phys Rev Lett 99:234302

    Article  Google Scholar 

  • Gelderblom EC, Vos HJ, Mastik F, Faez T, Lucan Y, Kokhuis TJA, van der Steen AFW, Lohse D, de Jong N, Versluis M (2012) Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates and enhanced features. Rev Sci Instrum 83:103706

    Google Scholar 

  • Gendrich CP, Koochesfahani MM, Nocera DG (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23(5):361–372

    Article  Google Scholar 

  • Glasheen J, McMahon T (1996) A hydrodynamic model of locomotion in the Basilisk Lizard. Nature 380:340

    Article  Google Scholar 

  • Gordillo M, Sevilla A, Rodríguez-Rodríguez J, Martnez-Bazán C (2005) Axisymmetric bubble pinch-off at high Reynolds numbers. Phys Rev Lett 95(19):194501

    Article  Google Scholar 

  • Hiller B, Booman RA, Hassa C, Hanson RK (1984) Rev Sci Instr 55(12):1964–1967

    Article  Google Scholar 

  • Hoess P, Fleder K (2003) In: Takayama K, Saito T, Kleine H, Timofeev EV (eds) Proceedings on 24th international congress on high-speed photography and photonics, vol 4183. SPIE, Bellingham, WA, p 127

  • Honour J (1994) In: Proceedings on 21st international congress on high speed photography and photonics, vol. 2513 SPIE, Bellingham, WA, pp 28–34

  • Honour J (1997) Electronic camera for simultaneous framing and streak recording. In: Proceedings of SPIE 2869, 22nd international congress on high-speed photography and photonics, p 668

  • Honour J (2002) In: Ray SF (eds) High speed photography and photonics, vol. PM120, SPIE, Bellingham, WA, pp 134–149

  • Hoyer K, Holzner M, Luethi B, Guala M, Liberzon A, Kinzelbach W (2005) 3D scanning particle tracking velocimetry. Exp Fluids 39:923–934

    Article  Google Scholar 

  • Hu D, Chan B, Bush J (2003) The hydrodynamics of water strider locomotion. Nature 424:663–666

    Article  Google Scholar 

  • Hutchings IM, Martin GD, Hoath SD (2007) High speed imaging and analysis of jet and drop formation. J Imaging Sci Technol 51(5):438

    Article  Google Scholar 

  • Igel EA, Kristiansen M (1997) Rotating-mirror streak and framing cameras. vol PM43, SPIE, Bellingham, WA

    Google Scholar 

  • Kaye A (1963) A bouncing liquid stream. Nature 197:100–102

    Article  Google Scholar 

  • Kennedy JE, ter Haar GR, Cranston D (2003) High intensity focused ultrasound: surgery of the future? Br J Radiol 76(909):590–599

    Article  Google Scholar 

  • Kitzhofer J, Nonn T, Brückner C (2011) Generation and visualization of volumetric PIV data fields. Exp Fluids 51:1471–1492

    Article  Google Scholar 

  • Kleine H (2010) Filming the invisible time-resolved visualization of compressible flows. Eur Phys J Special Topics 182:3–34

    Article  Google Scholar 

  • Kleine H, Olivier H, Tsuji K, Etoh K, Takehara K, Etoh TG (2012) Time-resolved Mach-Zehnder interferometry of shock waves. In: 28th international symposium on shock waves, vol 1. Springer, Berlin, pp 577–583

  • Kohse-Höinghaus K, Jeffries JB (2002) Applied combustion diagnostics. Taylor and Francis, New York

    Google Scholar 

  • Kooiman K, Böhmer MR, Emmer M, Vos HJ, Chlon C, Shi WT, Hall CS, de Winter SHPM, Schroën K, Versluis M, de Jong N, van Wamel A (2009) Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. J Contr Rel 133:109–118

    Article  Google Scholar 

  • Kudo N, Okada K, Yamamoto K (2009) Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys J 96(12):4866–4876

    Article  Google Scholar 

  • Kun F, Wittel FK, Herrmann HJ, Kröplin BH, Måløy KJ (2006) Scaling behavior of fragment shapes. Phys Rev Lett 96:025504

    Article  Google Scholar 

  • Lentacker I, De Smedt SC, Sanders NN (2009) Drug-loaded microbubble design for ultrasound-triggered delivery. Soft Matter 5(11):2161–2170

    Article  Google Scholar 

  • Lohse D, Schmitz B, Versluis M (2001) Snapping shrimp make flashing bubbles. Nature 413:477

    Article  Google Scholar 

  • Lohse D, Bergmann R, Mikkelsen R, Zeilstra C, van der Meer D, Versluis M, van der Weele J, van der Hoef M, Kuipers J (2004) Impact on soft sand: void collapse and jet formation. Phys Rev Lett 93(19):198003–1

    Article  Google Scholar 

  • Longuet-Higgins S, Kerman BR, Lunde K (1991) The release of air bubbles from an underwater nozzle. J Fluid Mech 230:365

    Article  MATH  Google Scholar 

  • Mach E, Mach L (1889) Weitere ballistisch-photographische Versuche. Sitzungsber Kaiserl Akad Wissenschaft Mathematisch-Naturwisenschaft Classe 98:1310–1332

    Google Scholar 

  • Marey EJ (1868) Determination experimentale du mouvement del ailes des insectes pendant le vol. C R Acad Sci 67:1341–1345

    Google Scholar 

  • Marey E (1894) Le mouvement. G. Masson, Paris

    Google Scholar 

  • Marmottant PH, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423:153–156

    Google Scholar 

  • Martínez-Mercado J, Chehata D, van Gils D, Sun C, Lohse D (2010) J Fluid Mech 650:287–306

    Article  Google Scholar 

  • Martínez-Mercado J, Prakash VN, Tagawa Y, Sun C, Lohse D (2012) Lagrangian statistics of light particles in turbulence. Phys Fluids 24:055106

    Article  Google Scholar 

  • Meinhart C, Wereley S, Gray M (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814

    Article  Google Scholar 

  • Merzkirch W (1987) Flow visualization, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  • Miles RB, Grinstead J, Kohl RH, Diskin G (2000) The RELIEF flow tagging technique and its application in engine testing facilities and for helium air mixing studies. Meas Sci Technol 11(9):1272–1281

    Article  Google Scholar 

  • Miller C (1949) Half-million stationary images per second with refocused revolving beams. J Soc Motion Picture Eng 53:479

    Google Scholar 

  • Minnaert M (1933) On musical air-bubbles and the sounds of running water. Phil Mag 16:235–248

    Google Scholar 

  • Mordant N, Leveque E, Pinton J (2004) Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J Phys 6:34

    Article  Google Scholar 

  • Murphy MJ, Adrian RJ (2010) PIV space-time resolution of flow behind blast waves. Exp Fluids 49(1):193–202

    Google Scholar 

  • Muybridge E, Mozley AV (1887) Human and animal locomotion. Dover, New York

    Google Scholar 

  • Ni R, Huang SD, Xia KQ (2012) Lagrangian acceleration measurements in convective thermal turbulence. J Fluid Mech 692:395–419

    Article  MATH  Google Scholar 

  • Nooren PA, Versluis M, van der Meer TH, Barlow RS, Frank JH (2000) Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Appl Phys B 71:95–111

    Article  Google Scholar 

  • Ohl CD (2002) Cavitation inception following shock wave passage. Phys Fluids 14(10):3512–3521

    Article  Google Scholar 

  • Ohl CD, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Phil Trans R Soc A 357:269–294

    Article  MathSciNet  MATH  Google Scholar 

  • Ohl CD, Arora M, Ikink R, de Jong N, Versluis M, Delius M, Lohse D (2006) Sonoporation from jetting cavitation bubbles. Biophys J 91:4285–4295

    Article  Google Scholar 

  • Oğuz HN, Prosperetti A (1993) Dynamics of bubble-growth and detachment from a needle. J Fluid Mech 257:111

    Article  Google Scholar 

  • Parker V, Roberts C (2002) Rotating mirror and drum cameras. In: Ray SF (ed) High Speed Photography and Photonics, vol. PM120, Chap 10. SPIE, Bellingham, WA, pp 158–180

  • Patek SN, Korff WL, Caldwell RL (2004) Biomechanics: deadly strike mechanism of a mantis shrimp. Nature 428:819–820

    Article  Google Scholar 

  • Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Williams JJC, Cleveland RO, Colonius T, Crum LA, Evan AP, McAteer JA (2003) Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shock waves. J Endourol 17(7):435–446

    Article  Google Scholar 

  • Plateau JAF (1873) Statique exprimentale et thorique des liquides soumis aux seules forces molculaires, Gauthier-Villard, Paris

    Google Scholar 

  • Poelma C, Vennemann P, Lindken R, Westerweel J (2008) Exp Fluids 45(4):703–713

    Article  Google Scholar 

  • Poelma C, Mari JM, Foin N, Tang MX, Krams R, Caro CG, Weinberg PD, Westerweel J (2011) 3D flow reconstruction using ultrasound PIV. Exp Fluids 50:777–785

    Article  Google Scholar 

  • Pommer MS, Kiehl AR, Soni G, Dakessian NS, Meinhart CD (2007) Proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems

  • Porta AL, Voth GA, Crawford AM, Alexander J, Bodenschatz E (2001) Fluid particle accelerations in fully developed turbulence. Nature 409:1017–1019

    Article  Google Scholar 

  • Prosperetti A, Crum LA, Pumphrey HC (1989) The underwater noise of rain. J Geophys Res 94:32–39

    Google Scholar 

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry, 2nd edn. Springer, Berlin

    Google Scholar 

  • Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29:71

    Article  Google Scholar 

  • Rensen J, Luther S, Lohse D (2005) The effects of bubbles on developed turbulence. J Fluid Mech 538:153–187

    Article  MATH  Google Scholar 

  • Rensen J, Luther S, de Vries J, Lohse D (2005) Hot-film anemometry in bubbly flow I: bubble probe interaction. Int J Multiphase Flow 31:285–301

    Article  MATH  Google Scholar 

  • Ribarov LA, Wehrmeyer JA, Pitz RW, Yetter RA (2002) Hydroxyl tagging velocimetry (HTV) in experimental air flows. Appl Phys B 74(2):175–183

    Article  Google Scholar 

  • Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121(2):1190–1202

    Article  Google Scholar 

  • Schouveiler L, Provansal M (2002) Self-sustained oscillations in the wake of a sphere. Phys Fluids 14:3846–3854

    Article  MathSciNet  Google Scholar 

  • Settles GS (2001) Schlieren and Shadowgraph techniques, Springer, Berlin

    Book  MATH  Google Scholar 

  • Shi XD, Brenner MP, Nagel SR (1994) A cascade of structure in a drop falling from a Faucet. Science 265(5169):219–222

    Article  MathSciNet  MATH  Google Scholar 

  • Sreenivasan KR, Prasad RR (1989) New results on the fractal and multifractal structure of the large Schmidt number passive scalars in fully turbulent flows. Physica D 38(1–3):322–329

    Article  Google Scholar 

  • Tagawa Y, Oudalov N, Visser CW, Peters I, van der Meer D, Sun C, Prosperetti A, Lohse D (2012) Highly focused supersonic microjets. Phys Rev X 2:031002

    Article  Google Scholar 

  • Talbot WHF (1852) On the production of instantaneous photographic images. Phil Mag 4:73–77

    Google Scholar 

  • Thoroddsen ST (2002) The ejecta sheet generated by the impact of a drop. J Fluid Mech 451:373–381

    Google Scholar 

  • Thoroddsen ST, Takehara K (2000) The coalescence-cascade of a drop. Phys Fluids 12:1265–1267

    Google Scholar 

  • Thoroddsen ST, Etoh TG, Takehara K (2006) Crown-breakup by Marangoni instability. J Fluid Mech 557:63–72

    Article  MATH  Google Scholar 

  • Thoroddsen ST, Etoh TG, Takehara K (2007) Experiments on bubble pinch-off. Phys Fluids 19(4):042101

    Article  Google Scholar 

  • Tichigi Y, Hanzawa K, Kato Y, Kuroda R, Mutoh H, Hirose R, Tominaga H, Takubo K, Kondo Y, Sugawa S (2012) IEEE international solid-state circuits conference digest of technical papers, pp 382–384

  • Tilton J (1999) Fluid and particle dynamics. Perrys chemical engineers handbook, vol 6.1 50

  • Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Ann Rev Fluid Mech 41(1):375–404

    Article  MathSciNet  Google Scholar 

  • van der Bos A, Zijlstra A, Gelderblom E, Versluis M (2011) iLIF: illumination by laser-induced fluorescence for single flash imaging on a nanoseconds timescale. Exp Fluids 51:1283–1289

    Article  Google Scholar 

  • van Hoeve W, Gekle S, Snoeijer JH, Versluis M, Brenner MP, Lohse D (2010) Breakup of diminutive Rayleigh jets. Phys Fluids 22(12):122003

    Article  Google Scholar 

  • van der Meer SM, Dollet B, Chin CT, Bouakaz A, Voormolen M, de Jong N, Versluis M, Lohse D (2007) Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am 121(1):648–656

    Article  Google Scholar 

  • van der Veen RCA, Tran T, Lohse D, Sun C (2012) Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys Rev E 85:026315

    Article  Google Scholar 

  • van Wijngaarden L (2005) Bubble velocities induced by trailing vortices behind neighbours. J Fluid Mech 541:203–229

    Article  MathSciNet  MATH  Google Scholar 

  • Veldhuis C, Biesheuvel A, van Wijngaarden L, Lohse D (2005) Motion and wake structure of spherical particles. Nonlinearity 18(1):C1–C8

    Article  MATH  Google Scholar 

  • Verhaagen B, Boutsioukis C, Heijnen GL, van der Sluis LWM, Versluis M (2012) Role of the confinement of a root canal on jet impingement during endodontic irrigation. Exp Fluids 53:1841–1853

    Google Scholar 

  • Versluis M, Georgiev N, Martinsson L, Aldén M, Kröll S (1997) 2-D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration. Appl Phys B 65:411–417

    Article  Google Scholar 

  • Versluis M, Schmitz B, von der Heydt A, Lohse D (2000) How snapping shrimp snap: through cavitating bubbles. Science 289:2114–2117

    Google Scholar 

  • Versluis M, Blom C, van der Meer D, van der Weele K, Lohse D (2006) Leaping shampoo and the stable Kaye effect. J Stat Mech 280:P07007

    Article  Google Scholar 

  • Versluis M, Palanchon P, Goertz D, Heitman I, van der Meer S, Dollet B, de Jong N, Lohse D (2010) Microbubble shape oscillations excited through an ultrasound-driven parametric instability. Phys Rev E 82:026321

    Article  Google Scholar 

  • Wamel AV, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, Jong ND (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Contr Rel 112(2):149–155

    Article  Google Scholar 

  • Warden SJ (2003) A new direction for ultrasound therapy in sports medicine. Sports Med 33:95–107

    Article  Google Scholar 

  • Wijshoff H (2010) The dynamics of the piezo inkjet printhead operation. Phys Rep 491(4–5):77–177

    Article  Google Scholar 

  • Worthington AM (1908) A study of splashes. Longmans Green and Co, London

    Google Scholar 

  • Worthington AM, Cole RS (1897) Impact with a liquid surface studied by the aid of instantaneous photography. Phil Trans R Soc Lond Ser A 189:137–148

    Article  MATH  Google Scholar 

  • Worthington AM, Cole RS (1900) Impact with a liquid surface studied by the aid of instantaneous photography; Paper II. Phil Trans R Soc Lond Ser A 194:175–200

    Article  Google Scholar 

  • Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94(1–4):184505

    Google Scholar 

  • Zhen X, Ludomirsky A, Eun LY, Hall TL, Tran BC, Fowlkes JB, Cain CA (2004) Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelec Freq Contr 51(6):726–736

    Article  Google Scholar 

  • Zijlstra AG, Ohl CD (2008) On fiber optic probe hydrophone measurements in a cavitating liquid. J Acoust Soc Am 123(1):29–32

    Article  Google Scholar 

Download references

Acknowledgments

This hands-on review on high-speed imaging has not been possible without the numerous and valuable contributions of my dear colleagues and friends in the various fields of research. I would therefore like to acknowledge contributions and support from Detlef Lohse and Nico de Jong. I also enjoyed many scientific discussions with Claus-Dieter Ohl, Chao Sun, and Goji Etoh. I also gratefully acknowledge the valuable and extensive discussions with my former PhD students Erik Gelderblom, Arjan van der Bos, Aaldert Zijlstra, Bram Verhaagen, Christian Veldhuis, and Wim van Hoeve. Many undergraduate students have contributed in the course of the Physics of Fluids lab course and Experimental Methods in Fluid Mechanics course, and in particular I would like to thank Tim Segers and Hans Kroes for contributions to Fig. 1c, Sander van der Meer and Ramon van den Berg to Fig. 3, Arthur van Bilsen and Raymond Bergmann to Fig. 8, and Rik Groenen, Elbert van Putten, Erik Gelderblom, and Ramy El-Dardiry to Fig. 15. Furthermore, I would like to thank Devaraj van der Meer, Chien Ting “Cash” Chin, Frits Mastik, Charles Lancée, Martijn Frijlink, Elmer Koene, Rik Vos, Manish Arora, Rory Dijkink, Marlies Overvelde, Jos de Jong, Valeria Garbin, Siggi Thoroddsen, Flordeliza Villanueva, Xucai Chen, Peter Andresen\(^{\dagger},\) Theo van der Meer, Marcus Aldén, Clemens Kaminski, Edwin van der Bunt, Jan Tukker, Mike Bailey, Larry Crum, and Tom Matula, and Hans Reinten and Mark van den Berg of Océ Technologies and Paul Duineveld of Philips for their contributions to this review. I would like to acknowledge various technical discussions with Frans Langeweg of Kodak MASD/Roper Scientific/Redlake, Vance Parker, Sid Nebeker, and Nathan Nebeker of Cordin Company, Tim Nicholls of Photron, Kinko Tsuji, and Yasushi Kondo of Shimadzu Corporation, and John Boaler and Heiner Voges of LaVision. The technical skills of Henni Scholten\(^{\dagger},\) Gert-Wim Bruggert, Bas Benschop, Martin Bos, and of Jan Honkoop, Leo Bekkering, Wim van Alphen, and Cees Pakvis of Erasmus MC are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Versluis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 52,473 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Versluis, M. High-speed imaging in fluids. Exp Fluids 54, 1458 (2013). https://doi.org/10.1007/s00348-013-1458-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1458-x

Keywords

Navigation