Skip to main content

High-Speed Imaging of Shock Waves and Their Flow Fields

  • Chapter
  • First Online:
The Micro-World Observed by Ultra High-Speed Cameras

Abstract

High-speed imaging has a long history in the field of shock wave research, but only in the last two decades has it become a frequently used diagnostic tool, primarily through the availability of powerful, compact and user-friendly digital high-speed cameras. In this research field, the high-speed imaging must usually be combined with an adequate visualisation method to make the shock waves and their flow fields visible. This chapter gives an overview of the used visualisation techniques and cameras. A few examples of applications are presented that highlight the potential but also the limitations of the available techniques to obtain time-resolved visualisations of compressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The issue of minuscule shock waves will be briefly discussed in Sect. 4.

  2. 2.

    The exact transition angle for this shock Mach number is \( 42.7^{ \circ } \) polar angle or \( 47.3^{ \circ } \) wall angle, respectively, where wall angle and polar angle are complementary angles for \( 90^{ \circ } \).

References

  1. P.O.K. Krehl, History of Shock Waves, Explosions and Impact: A Chronological And Biographical Reference (Springer, Berlin, 2009)

    Google Scholar 

  2. H. Kleine, J.M. Dewey, K. Ohashi, T. Mizukaki, K. Takayama, Studies of the TNT equivalence of silver azide charges. Shock Waves 13, 123–138 (2003)

    Article  Google Scholar 

  3. W. Liepmann, A. Roshko, Elements of Gasdynamics (Wiley, New York, 1957)

    MATH  Google Scholar 

  4. J.M. Dewey, Expanding spherical shocks (blast waves), in Handbook of Shock Waves, vol 2 (Academic, San Diego, 2001), pp. 441–481

    Google Scholar 

  5. B.D. Henshall, On Some Aspects of the Use of Shock Tubes in Aerodynamic Research (ARC RM 3044, London, 1955)

    Google Scholar 

  6. I.I. Glass, J.G. Hall, in Shock Tubes, Report NAVORD 1488, vol 6, section 18 (Bureau of Naval Weapons, Washington DC, 1959)

    Google Scholar 

  7. H. Oertel, Stossrohre (Springer, Wien, 1966)

    Google Scholar 

  8. W. Merzkirch, Flow Visualization, 2nd edn. (Academic, Orlando, 1987)

    MATH  Google Scholar 

  9. G.S. Settles, Schlieren and Shadowgraph Techniques (Springer, New York, Heidelberg, 2001)

    Book  MATH  Google Scholar 

  10. H. Kleine, Flow visualization, in Handbook of Shock Waves, vol 1 (Academic, San Diego, 2001), pp. 683–740

    Google Scholar 

  11. H. Schardin, Die Schlierenverfahren und ihre Anwendungen. Erg. exakt. Naturwiss. 20, 303–439 (1942)

    MATH  Google Scholar 

  12. M.J. Hargather, G.S. Settles, Retroreflective shadowgraph technique for large-scale flow visualization. Appl. Optics 48, 4449–4457 (2009)

    Article  Google Scholar 

  13. L.M. Weinstein, Review and update of lens and grid Schlieren and motion camera Schlieren. Euro. Phys. J. Special Topics 182, 65–95 (2010)

    Article  Google Scholar 

  14. M. Raffel, Background-oriented Schlieren (BOS) techniques. Exp. Fluids 56, 60 (2015)

    Article  Google Scholar 

  15. H. Kleine, C. Le Vo, K. Takehara, T.G. Etoh, Time-resolved visualization of shock-vortex systems emitted from an open shock tube. J. Visualization 13, 33–40 (2010)

    Article  Google Scholar 

  16. H. Kleine, Filming the invisible—time-resolved visualization of compressible flow. Euro. Phys. J. Special Topics 182, 3–34 (2010)

    Article  Google Scholar 

  17. M. Versluis, High-speed imaging in fluids. Exp. Fluids 54, 1458 (2013)

    Article  Google Scholar 

  18. A. Toepler, Beobachtungen nach einer neuen optischen Methode—Ein Beitrag zur Experimentalphysik (Max Cohen & Sohn, Bonn, 1864)

    MATH  Google Scholar 

  19. P. Krehl, S. Engemann, August Toepler—the first who visualized shock waves. Shock Waves 5, 1–18 (1995)

    Article  MATH  Google Scholar 

  20. E. Mach, P. Salcher, Photographische Fixierung der durch Projektile in der Luft eingeleiteten Vorgänge. Sitzungsb. Akad. Wiss. Wien 95, 764–780 (1887)

    Google Scholar 

  21. E. Mach, P. Salcher, Optische Untersuchung der Luftstrahlen. Sitzungsb. Akad. Wiss. Wien 98, 1303–1309 (1889)

    Google Scholar 

  22. C. Cranz, H. Schardin, Kinematographie auf ruhendem Film und mit extrem hoher Bildfrequenz. Z. Phys. 56, 147–183 (1929)

    Article  Google Scholar 

  23. H. Olivier, T. Reichel, M. Zechner, Airfoil flow visualization and pressure measurements in high-Reynolds-number transonic flow. AIAA J. 41, 1405–1412 (2003)

    Article  Google Scholar 

  24. V. Parker, C. Roberts, Rotating mirror and drum cameras, in Scientific Photography and Applied Imaging, ed. by S.F. Ray (Focal Press, Oxford, 1999), pp. 167–180

    Google Scholar 

  25. H. Schardin, The relationship between maximum frame frequency and resolution in rotating mirror framing cameras, in Proceedings of the 3rd International Congress High-Speed Photography, Butterworths, London, pp. 316–323 (1957)

    Google Scholar 

  26. G. Ben-Dor, Shock Wave Reflection Phenomena, 2nd edn. (Springer, Heidelberg, 2007)

    MATH  Google Scholar 

  27. H. Kleine, Schlieren imaging and the real world. J. Visualization 16, 193–199 (2013)

    Article  Google Scholar 

  28. S.M. Bogdonoff, I.E. Vas, Preliminary investigations of spiked bodies at hypersonic speeds. J. Aerospace Sci. 26, 65–74 (1959)

    Article  MATH  Google Scholar 

  29. H. Kleine, Time-resolved visualization of shock wave phenomena, in Proceedings of the 29th International Congress High Speed Imaging and Photonics, Iwate Medical University, paper C-02 (2011)

    Google Scholar 

  30. H. Kleine, H. Olivier, K. Tsuji, K. Etoh, K. Takehara, T.G. Etoh, Time-resolved Mach-Zehnder interferometry, in Proceedings of the 29th International Congress High Speed Imaging and Photonics, Iwate Medical University, paper C-07 (2011)

    Google Scholar 

  31. H. Kleine, H. Olivier, K. Tsuji, K. Etoh, K. Takehara, T.G. Etoh, Time-resolved Mach-Zehnder interferometry of shock waves, in Proceedings of the 28th International Symposium. Shock Waves, vol 1, Springer, Heidelberg, pp. 577–583 (2012)

    Google Scholar 

  32. B.W. Skews, H. Kleine, Flow features resulting from shock wave impact on a cylindrical cavity. J. Fluid Mech. 580, 481–493 (2007)

    Article  MATH  Google Scholar 

  33. H. Schardin, Untersuchung instationärer gasdynamischer Vorgänge als Beispiel für den zweckmässigen Einsatz der Hochfrequenzkinematographie, in Proceedings of the 7th International Kongr. Kurzzeitphotographie, Helwich, Darmstadt, pp. 17–23 (1967)

    Google Scholar 

  34. A.S. Katayama, Visualization Techniques for Temporally Acquired Sequences of Images, US Patent No. 5294978 (1994)

    Google Scholar 

  35. V. Sridhar, H. Kleine, S. Gai, Visualization of wave propagation within a supersonic two-dimensional cavity by digital streak schlieren. Exp. Fluids 56, 152 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Most of the work presented here would not have been possible without the support by many colleagues and friends. I would like to acknowledge in particular the contributions of em. Prof. John Dewey (University of Victoria, Canada), Prof. T. Goji Etoh (Ritsumeikan University, Japan), Prof. Koju Hiraki (Kyushu Institute of Technology), Prof. Herbert Olivier (RWTH Aachen University, Germany), Prof. Gary Settles (Penn State University, USA), Prof. Beric Skews (University of the Witwatersrand, South Africa) and Prof. Kazuyoshi Takayama (Tohoku University, Japan), who all inspired and supported many of the experiments I had the privilege to conduct. I am also indebted to em. Prof. Hans Grönig (RWTH Aachen University, Germany), who introduced me to the exciting field of compressible flows and their visualisation. Last, but not least, I would like to express my thanks for the excellent technical support I have received over the last years from members of the SEIT Mechanical Workshop, in particular from Stuart Gay and Michael Jones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Kleine .

Editor information

Editors and Affiliations

1 Electronic supplementary material

421713_1_En_6_MOESM1_ESM.mpg

Laboratory explosions visualised by omnidirectional schlieren: reflection of the blast wave generated by a 10 mg charge of silver azide for a height of burst of 35 mm; frame rate: 500,000 fps (MPG 425 kb)

421713_1_En_6_MOESM2_ESM.mpg

Omnidirectional schlieren visualisation with front lighting of a rifle bullet flying at M∞ = 1:07; frame rate: 500,000 fps (MPG 921 kb)

421713_1_En_6_MOESM3_ESM.mpg

Shearing interferometry visualisation of a shock wave (MS = 1:33) interacting with a diamond cylinder; frame rate: 460,000 fps (MPG 2685 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kleine, H. (2018). High-Speed Imaging of Shock Waves and Their Flow Fields. In: Tsuji, K. (eds) The Micro-World Observed by Ultra High-Speed Cameras. Springer, Cham. https://doi.org/10.1007/978-3-319-61491-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61491-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61490-8

  • Online ISBN: 978-3-319-61491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics