Skip to main content

Brandaris Ultra High-Speed Imaging Facility

  • Chapter
  • First Online:
The Micro-World Observed by Ultra High-Speed Cameras

Abstract

High-speed imaging is in popular demand for a broad range of scientific applications, including fluid physics, and bubble and droplet dynamics. It allows for a detailed visualization of the event under study by acquiring a series of images captured at high temporal and spatial resolution. The challenge here is the combination of microscopic length scales and ultrashort time scales associated with the mechanisms governing fluid flows. In this chapter, ultra high-speed imaging at frame rates exceeding 10 million frames per second (fps) is briefly reviewed, including the emerging ultrafast sensor technologies and ultrashort nanoseconds flash illumination techniques. We discuss in detail the design and applications of the Brandaris 128 ultra high-speed imaging facility. The high-speed camera combines the optical frame of a rotating mirror camera with 128 CCD sensors and can record at a maximum frame rate of 25 Mfps. Six acquisitions can be stored in the on-board memory buffer, while in a segmented mode images are acquired in subsets, e.g. 24 × 32 frames, allowing parametric studies to be performed. We also discuss how the Brandaris camera is operated to capture details of bubble dynamics, droplet vaporization, and inkjet printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Versluis, High-speed imaging in fluids. Exp. Fluids 54, 1–35 (2013)

    Article  Google Scholar 

  2. M. Mennaert, On musical air-bubbles and the sounds of running water. Phil. Mag. 16, 235–248 (1933)

    Article  Google Scholar 

  3. T.G. Leighton, The Acoustic Bubble (Academic Press, London, 1994), p. 306

    Google Scholar 

  4. P.N. Burns, D. Hope Simpson, M.A. Averkiou, Nonlinear imaging. Ultrasound Med. Biol. 26, S19–S22 (2000)

    Article  Google Scholar 

  5. S.M. van der Meer, B. Dollet, C.T. Chin, A. Bouakaz, M. Voormolen, N. de Jong, M. Versluis, D. Lohse, Microbubble spectroscopy of ultrasound contrast agents. J. Acoust. Soc. Am. 128, 648–656 (2007)

    Article  Google Scholar 

  6. J. Sijl, B. Dollet, M. Overvelde, V. Garbin, T. Rozendal, N. de Jong, D. Lohse, M. Versluis, Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles. J. Acoust. Soc. Am. 128, 3239–3252 (2010)

    Article  Google Scholar 

  7. T. Faez, M. Emmer, M. Docter, J. Sijl, M. Versluis, N. de Jong, Characterizing the subharmonic response of phospholipid-coated microbubble for carotid imaging. Ultrasound Med. Biol. 37, 958–970 (2011)

    Article  Google Scholar 

  8. E. Muybridge, AV. Mozley, in Human and Animal Locomotion (Dover, New York, 1887)

    Google Scholar 

  9. B. Brixner, J.M. Dewey, R.G. Racca (Eds.), in 20th International Congress on High Speed Photography and Photonics, Proceedings (SPIE, Bellingham, 1992), vol. 1801, pp. 52–60

    Google Scholar 

  10. J. Honour, in 21st International Congress on High Speed Photography and Photonics, Proceedings (SPIE, Bellingham, 1994), vol. 2513, pp. 28–33

    Google Scholar 

  11. B.R. Lawrence, Review of ULTRANAC high-speed camera: applications, results, and techniques. Proc. SPIE 2869, 882–887 (1997)

    Article  Google Scholar 

  12. A. van der Bos, A. Zijlstra, E. Gelderblom, M. Versluis, iLIF: illumination by laser-induced fluorescence for single flash imaging on a nanoseconds timescale. Exp. Fluids 51, 1283–1289 (2011)

    Article  Google Scholar 

  13. A. van der Bos, M.J. van der Meulen, T. Driessen, M. van den Berg, H. Reinten, H. Wijshoff, M. Versluis, D. Lohse, Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation. Phys. Rev. Appl. 1, 014004 (2014)

    Article  Google Scholar 

  14. E.A. Igel, M. Kristiansen, Rotating-mirror streak and framing cameras, vol. PM43 (SPIE, Bellingham, 1997)

    Google Scholar 

  15. C.T. Chin, C. Lancée, J. Borsboom, F. Mastik, M.E. Frijlink, N. de Jong, M. Versluis, D. Lohse, Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev. Sci. Instr. 74, 5026–5034 (2003)

    Article  Google Scholar 

  16. E. Gelderblom, R. Vos, F. Mastik, T. Faez, T. Kokhuis, T. van der Steen, N. de Jong, D. Lohse, M. Versluis, Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates and enhanced features. Rev. Sci. Instr. 83, 103706 (2012)

    Article  Google Scholar 

  17. X. Chen, J. Wang, M. Versluis, N. de Jong, F.S. Villanueva, Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects. Rev. Scie. Instr. 84, 063701 (2013)

    Article  Google Scholar 

  18. C.D. Miller, Half-million stationary images per second with refocused revolving beams. J. Soc. Motions Pic. Eng. 53, 479–488 (1949)

    Article  Google Scholar 

  19. V. Parker, C. Roberts, Rotating mirror and drum cameras, in High Speed Photography and Photonics, ed. by S.F. Ray (SPIE, Bellingham, 2002), pp. 167–180

    Google Scholar 

  20. A. Skinner, Versatile high speed rotating mirror cameras. J. Sci. Instrum. 39, 336–343 (1962)

    Article  Google Scholar 

  21. T. Ding, T.H. van der Meer, M. Versluis, M. Golombok, J. Hult, M. Aldén, C.F. Kaminski, Time-resolved PLIF measurements in turbulent diffusion flames, in Third International Symposium on Turbulence, Heat and Mass Transfer, Proceedings, ed. by Y. Nagano, K. Hanjalic, T. Tsuji (2000) pp. 857–864

    Google Scholar 

  22. P. Marmottant, S.M. van der Meer, M. Emmer, M. Versluis, N. de Jong, S. Hilgenfeldt, D. Lohse, A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoutst. Soc. Am. 118, 3499–3505 (2005)

    Article  Google Scholar 

  23. N. de Jong, M. Emmer, A. van Wamel, M. Versluis, Ultrasonic characterization of ultrasound contrast agents. Med. Biol. Eng. Comput. 47, 861–873 (2009)

    Article  Google Scholar 

  24. J. Sijl, M.L.J. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, M. Versluis, “Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles. J. Acoust. Soc. Am. 129, 1729–1739 (2011)

    Article  Google Scholar 

  25. T. Faez, M. Emmer, K. Kooiman, M. Versluis, A.F.W. van der Steen, N. de Jong, 20 years of ultrasound contrast agent modeling. IEEE Trans. Ultrason. Ferroelec. Freq. Contri. 60, 6–20 (2013)

    Google Scholar 

  26. M.L.J. Overvelde, V. Garbin, J. Sijl, B. Dollet, N. de Jong, D. Lohse, M. Versluis, Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound Med. Biol. 36, 2080–2092 (2010)

    Article  Google Scholar 

  27. V. Garbin, D. Cojoc, E. Ferrari, E. di Fabrizio, M.L.J. Overvelde, S.M. van der Meer, N. de Jong, D. Lohse, M. Versluis, Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Appl. Phys. Lett. 90, 114103 (2007)

    Article  Google Scholar 

  28. G. Lajoinie, E. Linnartz, P. Kruizinga, N. de Jong, E. Stride, G. van Soest, M. Versluis, Laser-driven resonance of dye-doped oil-coated microbubbles: A theoretical and numerical study. J. Acoust. Soc. Am. 141, 2727–2745 (2017)

    Article  Google Scholar 

  29. G. Lajoinie, J.-Y. Lee, J. Owen, P. Kruizinga, N. de Jong, G. van Soest, E. Stride, M. Versluis, Laser-driven resonance of dye-doped oil-coated microbubbles: experimental study, J. Acoust. Soc. Am. (in print) (2017)

    Google Scholar 

  30. W. Lauterborn, Kavitation durch Laserlicht (Laser-induced cavitation). Acustica 31, 51–78 (1974)

    Google Scholar 

  31. M. Versluis, P. Palanchon, D.E. Goertz, I. Heitman, S.M. van der Meer, B. Dollet, N. de Jong, D. Lohse, Microbubble shape oscillations excited through an ultrasound-driven parametric instability. Phys. Rev. E 82, 026321 (2010)

    Article  Google Scholar 

  32. B. Dollet, S.M. van der Meer, V. Garbin, N. de Jong, D. Lohse, M. Versluis, Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med. Biol. 34, 1465–1473 (2008)

    Article  Google Scholar 

  33. H.J. Vos, B. Dollet, J.G. Bosch, M. Versluis, N. de Jong, Ultrasound Med. Biol. 34, 685–688 (2008)

    Article  Google Scholar 

  34. I. Lentacker, I. de Cock, R. Deckers, S.C. de Smedt, C.T. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49–64 (2014)

    Article  Google Scholar 

  35. K. Kooiman, H.J. Vos, M. Versluis, N. de Jong, Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Deliv. Rev. 72, 28–48 (2014)

    Article  Google Scholar 

  36. A. van Wamel, A. Bouakaz, M. Versluis, N. de Jong, Micromanipulation of endothelial cells: Ultrasound-microbubble-cell interaction. Ultrasound Med. Biol. 30, 1255–1258 (2004)

    Article  Google Scholar 

  37. A. van Wamel, K. Kooiman, M. Harteveld, M. Emmer, F.J. ten Cate, M. Versluis, N. de Jong, Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Contr. Rel. 112, 149–155 (2006)

    Article  Google Scholar 

  38. K. Kooiman, M.R. Böhmer, M. Emmer, H.J. Vos, C. Chlon, W.T. Shi, C.S. Hall, S. de Winter, K. Schroen, M. Versluis, N. de Jong, A. van Wamel, Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. J. Contr. Rel. 133, 109–118 (2009)

    Article  Google Scholar 

  39. I. de Cock, G. Lajoinie, M. Versluis, S.C. de Smedt, I. Lentacker, Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials 83, 294–307 (2016)

    Article  Google Scholar 

  40. M.L.J. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, M. Versluis, Dynamics of coated microbubbles adherent to a wall. Ultrasound Med. Biol. 37, 1500–1508 (2011)

    Article  Google Scholar 

  41. C.D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, D. Lohse, Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 4285–4295 (2006)

    Article  Google Scholar 

  42. H.J. Vos, B. Dollet, M. Versluis, N. de Jong, Nonspherical shape oscillations of coated microbubbles in contact with a wall. Ultrasound Med. Biol. 37, 935–948 (2011)

    Article  Google Scholar 

  43. O. Shpak, T.J.A. Kokhuis, Y. Luan, D. Lohse, N. de Jong, B. Fowlkes, M. Fabiilli, M. Versluis, Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J. Acoust. Soc. Am. 134, 1610–1621 (2013)

    Article  Google Scholar 

  44. O. Shpak, M. Verweij, H.J. Vos, N. de Jong, D. Lohse, M. Versluis, Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl. Acad. Sci. 111, 1697–1702 (2014)

    Article  Google Scholar 

  45. N. Reznik, O. Shpak, E.C. Gelderblom, R. Williams, N. de Jong, M. Versluis, P.N. Burns, The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets. Ultrasonics 53, 1368–1376 (2013)

    Article  Google Scholar 

  46. N. Reznik, G. Lajoinie, O. Shpak, E.C. Gelderblom, R. Williams, N. de Jong, M. Versluis, P.N. Burns, On the Acoustic Properties of Vaporized Submicron Perfluorocarbon Droplets. Ultrasound Med. Biol. 40, 1379–1384 (2014)

    Article  Google Scholar 

  47. O. Shpak, L. Stricker, M. Versluis, D. Lohse, The role of gas in ultrasonically driven vapor bubble growth. Phys. Med. Biol. 58, 2523–2535 (2013)

    Article  Google Scholar 

  48. J.J. Kwan, G. Lajoinie, N. de Jong, E. Stride, M. Versluis, C.C. Coussios, Ultrahigh-speed dynamics of micrometer-scale inertial cavitation from nanoparticles. Phys. Rev. Appl. 6, 044004 (2016)

    Article  Google Scholar 

  49. W. van Hoeve, S. Gekle, J.H. Snoeijer, M. Versluis, M.P. Brenner, D. Lohse, Breakup of diminutive Rayleigh jets. Phys. Fluids 22, 122003 (2010)

    Article  Google Scholar 

  50. J.A.F. Plateau, Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires (Gauthier-Villard, Paris, 1985)

    Google Scholar 

  51. L. Rayleigh, On the capillary phenomena of jets. Proc. R. Soc. London 29, 71–79 (1879)

    Article  Google Scholar 

  52. H. Dong, W.W. Carr, J.F. Morris, Rev. Sci. Instr. 77, 085101 (2006)

    Article  Google Scholar 

  53. I.M. Hutchings, G.D. Martin, S.D. Hoath, High speed imaging and analysis of jet and drop formation. J. Imaging Sci. Techn. 51, 438–444 (2007)

    Article  Google Scholar 

  54. D. Cressey, 365 days: images of the year. Nature 516, 304–309 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the inspiring and indispensable assistance of Frits Mastik, on both hardware and software issues, and also that of Gert-Wim Bruggert for support on the engineering and mechanical work. The first-hour constructors of the camera, Chien Ting Chin and Charles Lancée\( \dag \), thank you for your ideas and designs. We thank Detlef Lohse for stimulating discussions. We thank Cordin Company, for support in the first years of the project. We also would like to thank our collaborators from Ghent, Pittsburgh and Oxford. We also thank the collaborative support from industry: Bracco Suisse, Océ Technologies, and Philips. This work has been supported by FOM Foundation for Fundamental Research on Matter, Technology Foundation STW, Netherlands Heart Institute ICIN, Netherlands Organisation for Scientific Research NWO, European Commission Innovation Subsidies, and NanoNextNL, a micro- and nanotechnology consortium of the Government of The Netherlands and 130 partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Lajoinie .

Editor information

Editors and Affiliations

1 Electronic supplementary material

421713_1_En_3_MOESM1_ESM.mov

Acoustic droplet vaporization. Brandaris 128 recording of the ultrafast vaporization of a 5-μm perfluoropentane microdroplet, frame rate: 12.73 Mfps (MOV 3206 kb)

421713_1_En_3_MOESM2_ESM.mov

Bubble oscillation: Polydisperse bubbles viewed under the microscope of the Brandaris 128 camera, frame rate: 10.31 Mpfs (MOV 5670 kb)

421713_1_En_3_MOESM3_ESM.mov

Surface modes: Microbubble shape oscillations excited through ultrasonic parametric driving taken with the Brandaris 128 camera, frame rate: 1.13 Mfps (MOV 1562 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lajoinie, G., de Jong, N., Versluis, M. (2018). Brandaris Ultra High-Speed Imaging Facility. In: Tsuji, K. (eds) The Micro-World Observed by Ultra High-Speed Cameras. Springer, Cham. https://doi.org/10.1007/978-3-319-61491-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61491-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61490-8

  • Online ISBN: 978-3-319-61491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics