Skip to main content

Advertisement

Log in

Effect of Metals or Trace Elements on Wheat Growth and Its Remediation in Contaminated Soil

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Among numerous soil problems, metals or trace elements (TEs) accumulation is one of the significant agronomic tasks which have extremely threatened food safety. Due to these, soil agronomists in recent times have also raised concerns over metal pollution, which indeed are obnoxious, disturbing the agricultural ecosystems and agricultural crops. Because metals are not biodegradable, they can survive in the environment, enter the food chain via crop plants, and accumulate in the human body through bio- magnification. Once harmful metals have accumulated over specifically permitted thresholds, they negatively impact microbiota density, composition, physiological activity, soil dynamics, and fertility, leading ultimately to a decrease in wheat production via the food chain, human and animal health. Overall wheat growth and yield decrease with an increasing quantity of TES. So, land contamination must be remedied as soon as possible. Phytoremediation is an environmentally benign strategy that could be a cost-effective solution to revegetate trace metal-polluted soil. Certain microorganisms, particularly those belonging to the plant growth-promoting rhizobacteria (PGPR) group, have been identified as having the unique property of metal tolerance and exhibiting unique plant growth-promoting potentials in order to reduce the magnitude of metal-induced changes. By delivering macro and micronutrients and secreting active biomolecules such as extracellular polymorphic substances (EPS), melanin, and metallothionein (MTs), such metal-tolerant PGPR have shown varying favorable impacts on wheat productivity in soils even contaminated with TEs. In this review, we explore the mechanisms by which metals are taken up, and their effect on plant growth, translocation, and detoxification in plants. We concentrate on the ways used to improve phytostabilization and phytoextraction efficiencies, such as genetic engineering, microbe-assisted, and chelate-assisted procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

As:

Arsenic

Cd:

Cadmium

Co:

Cobalt

Cu:

Copper

PGPR:

Plant growth promoting rhizobacteria

EPS:

Extracellular polymorphic substances

EDX:

Energy-dispersive X-ray spectroscopy

FTIR:

Fourier-transform infrared spectroscopy

Fe:

Iron

Pb:

Lead

MTs:

Metallothionein

SOD:

Superoxide dismutase

CAT:

Catalase

PER:

Peroxidase

PCs:

Phytochelatins

EEM:

Excitation-emission matrix

ROS:

Reactive oxygen species

TEs:

Trace elements

Mg2+ :

Magnesium

Mn:

Manganese

MDA:

Malondialdehyde

Hg:

Mercury

MTs:

Metallothioneins

ZIP:

Zipper interacting protein

SEM:

Scanning electron microscope

Zn:

Zinc

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) Application of microorganisms in bioremediation-review. J Environ Microbiol 1:2–9

    Google Scholar 

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of trace elements: a review. J Chem Sci Technol 3:74–102

    Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224

    Article  CAS  Google Scholar 

  • Afonne OJ, Ifediba EC (2020) Trace elements risks in plant foods–need to step up precautionary measures. Curr Opin Toxicol 5:22–29

    Google Scholar 

  • Afzaal Z, Hussain I, Ashraf MA, Rasheed R, Javed MT, Mahmood-ur-Rahman Ansari SA, Iqbal M (2020) Lead induced modulation in growth, chlorophyll pigment, nutrient uptake, antioxidant enzyme regulation, gene expression and fruit quality in two tomato cultivars. Int J Agric Biol 24(6):1732–1744

    CAS  Google Scholar 

  • Ahmad Z, Imran M, Qadeer S, Hussain S, Kausar R, Dawson L, Khalid A (2018) Biosurfactants for sustainable soil management. Adv Agron 150:81–130

    Article  Google Scholar 

  • Akhtar MJ, Ullah S, Ahmad I, Rauf A, Nadeem SM, Khan MY, Bulgariu L (2018) Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere 190:234–242

    Article  CAS  PubMed  Google Scholar 

  • Alam H, Khattak JZ, Ksiksi TS, Saleem MH, Fahad S, Sohail H, Ali Q, Zamin M, El-Esawi MA, Saud S (2021) Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiol Plant 172:1336–1351

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of trace elements-concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Kamran M, Abbasi GH, Saleem MH, Ahmad S, Parveen A, Malik Z, Afzal S, Ahmar S, Dawar KM, Ali S, Alamri S, Siddiqui MH, Akbar R, Fahad S (2020) Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10273-3

    Article  Google Scholar 

  • Alia PM, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  PubMed  Google Scholar 

  • Alvarenga P, Gonçalves A, Fernandes R, De Varennes A, Vallini G, Duarte E (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 74:1292–1300. https://doi.org/10.1016/j.chemosphere.2008.11.063

    Article  CAS  PubMed  Google Scholar 

  • Aly E, Abo-Amer A-R, El- Shanshoury R, Othman MA (2015) Isolation and molecular characterization of trace metalresistant Alcaligenes faecalis from sewage waste water and synthesis of silver nanoparticles. Geomicrobiology. https://doi.org/10.1080/01490451.2015.1010754

    Article  Google Scholar 

  • Amari T, Saidi I, Taamali M, Abdelly C (2017) Morphophysiological changes in Cenchrus ciliaris and Digitaria commutata subjected to water stress. Int J Plant Res 7:12–20

    Google Scholar 

  • Anamika K, Nidhi H, Sanjay K, Radha R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  Google Scholar 

  • Ashraf M, Athar HR, Harris PJ, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017a) Advances in microbe assisted reclamation of trace metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143

    Article  CAS  Google Scholar 

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017b) Advances in microbe- assisted reclamation of trace metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143

    Article  CAS  Google Scholar 

  • Asker MMS, Mahmoud MG, Ibrahim AY, Mohamed SS (2015) Inhibitory effect of exopolysaccharide from Achromobacter piechaudii NRC2 against cyclooxygenases and acetylcholinesterase with evaluation of its antioxidant properties and structure elucidation. Pharm Lett 7:129–141

    Google Scholar 

  • Assunção A, Martins PDC, De Folter S, Vooijs R, Schat H, Aarts M (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226. https://doi.org/10.1111/j.1365-3040.2001.00666.x

    Article  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for trace metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94. https://doi.org/10.3390/ijerph14010094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. Chem Biol Eng Rev 4:37–59

    Google Scholar 

  • Azmat R, Haider S, Nasreen H, Aziz F, Riaz M (2009) A viable alternative mechanism in adapting the plants to trace metal environment. Pak J Bot 41:2729–2738

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques-classification 34 based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180. https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baby R, Saifullah B, Hussein MZ (2019) Carbon nanomaterials for the treatment of trace metal-contaminated water and environmental remediation. Nanoscale Res Lett 14(1):1–17

    Article  CAS  Google Scholar 

  • Balk J, Schaedle TA (2014) Iron cofactor assembly in plants and lead role. Annu Rev Plant Biol 65:125–153

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Supakar S, Banerjee R (2014) Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization. PLoS ONE 9:e84574

    Article  PubMed  PubMed Central  Google Scholar 

  • Bankar A, Nagaraja G (2018) Recent trends in biosorption of heavy metals by Actinobacteria. In: Gupta V (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 257–275

    Chapter  Google Scholar 

  • Banuelos G, Meek D (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777. https://doi.org/10.2134/jeq1990.00472425001900040023x

    Article  CAS  Google Scholar 

  • Banuelos G, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P (1993) Boron and selenium removal in boron−laden soils by four sprinkler irrigated plant species. J Environ Qual 22:786–792. https://doi.org/10.2134/jeq1993.00472425002200040021x

    Article  CAS  Google Scholar 

  • Baruah N, Mondal SC, Farooq M, Gogoi N (2019) Influence of heavy metals on seed germination and seedling growth of wheat, pea and tomato. Water Air Soil Pollut 230(12):1–15

    Article  Google Scholar 

  • Batool R, Marghoob U, Kalsoom A (2017) Estimation of exopolysaccharides (EPS) producing ability of Cr (VI) resistant bacterial strains from tannery effluent. J Basic Appl Sci 13:589–596

    Article  CAS  Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman JF, Guerriero G (2019) Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    Article  CAS  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of elements. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic elements: using plants to clean-up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Bhargavi VGR, Padmavathi T (2016) Bacillus sp. as potential plant growth promoting rhizobacteria. Int J Adv Life Sci 9:28–36

    Google Scholar 

  • Burges A, Alkorta I, Epelde L, Garbisu C (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediat 20:384–397. https://doi.org/10.1080/15226514.2017.1365340

    Article  CAS  Google Scholar 

  • Camacho-Chab J, Castañeda-Chávez M, Chan-Bacab M, Aguila-Ramírez R, Galaviz-Villa I, Bartolo-Pérez P, Lango-Reynoso F, Tabasco-Novelo C, Gaylarde C, Ortega-Morales B (2018) Biosorption of cadmium by non-toxic extracellular polymeric substances (EPS) synthesized by bacteria from marine intertidal biofilms. Int J Environ Res Public Health 15:314. https://doi.org/10.3390/ijerph15020314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Congyan W, Bingde W, Kun J, Mei W, Shu W (2019) Effects of different concentrations and types of Cu and Pb on soil N-fixing bacterial communities in the wheat rhizosphere. Appl Soil Ecol 144:51–59

    Article  Google Scholar 

  • Cordero RJ, Vij R, Casadevall A (2017) Microbial melanins for radioprotection and bioremediation. Microbial Biotechnol 10:1186–1190

    Article  Google Scholar 

  • Côte J, Boniface A, Blanchet S, Hendry AP, Gasparini J, Jacquin L (2018) Melanin-based coloration and host–parasite interactions under global change. Proc R Soc B 285(1879):20180285

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuong AM, Le Na NT, Thang PN, Diep TN, Thuy LB, Thanh NL, Thang ND (2018) Melanin embedded materials effectively remove hexavalent chromium (Cr VI) from aqueous solution. Environ Health Prev Med 23:9. https://doi.org/10.1186/s12199-018-0699-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadook M, Mehrabian S, Salehi M, Irian S (2014) Morphological, biochemical and molecular characterization of twelve nitrogen-fixing bacteria and their response to various zinc concentration. Jundishapur J Microbiol 7:9415

    Article  Google Scholar 

  • Dadrasnia A, Chuan Wei KS, Shahsavari N, Azirun MS, Ismail S (2015) Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr (VI) from aqueous solution. Int J Environ Res Public Health 12:15321–15338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:1–5

    Article  Google Scholar 

  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Trace metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20:3412. https://doi.org/10.3390/ijms20143412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards trace metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2:362–368

    Google Scholar 

  • De Silva AAL, Ribeiro de Carvalho MA, de Souza SAL, Teixeira Dias PM, da Silva Filho RG, de Meirelles Saramago CS, de Melo Bento CA, Hofer E (2012) Trace metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz J Microbiol 43:1620–1631

    Article  Google Scholar 

  • Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPS) in ocean systems. Front Microbiol 8:922. https://doi.org/10.3389/fmicb.2017.00922

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng G, Yang M, Saleem MH, Rehman M, Fahad S, Yang Y, Elshikh MS, Alkahtani J, Ali S, Khan SM (2021) Nitrogen fertilizer ameliorate the remedial capacity of industrial hemp (Cannabis sativa L.) grown in lead contaminated soil. J Plant Nutr 44:1–9

    Article  Google Scholar 

  • Dhanwal P, Kumar A, Dudeja S, Chhokar V, Beniwal V (2017) Recent advances in phytoremediation technology. Advances in environmental biotechnology. Springer, Singapore, pp 227–241

    Chapter  Google Scholar 

  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  • Domínguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476. https://doi.org/10.1111/j.1467-7652.2004.00092.x

    Article  CAS  PubMed  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    Article  CAS  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175. https://doi.org/10.1023/A:1022527207359

    Article  CAS  Google Scholar 

  • Eapen S, D’souza S (2005) Prospects of genetic engineering of plants for phytoremediation of toxic elements. Biotechnol Adv 23:97–114. https://doi.org/10.1016/j.biotechadv.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  • Ebbs S, Lasat M, Brady D, Cornish J, Gordon R, Kochian L (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430. https://doi.org/10.2134/jeq1997.00472425002600050032x

    Article  CAS  Google Scholar 

  • Eick MJ, Peak JD, Brady PV, Pesek JD (1999) Kinetics of lead adsorption/desorption on goethite: residence time effect. Soil Sci 164:28–39

    Article  CAS  Google Scholar 

  • El-Kady AA, Abdel-Wahhab MA (2018) Occurrence of heavy metals in foodstuffs and their health impact. Trends Food Sci Technol 75:36–45

    Article  CAS  Google Scholar 

  • El-Naggar NE, El-Ewasy SM (2017) Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci Rep 7:42129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Trace metal stress and some mechanisms of plant defense response. Sci World J. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  • Eman AA, Monem AE, Saleh MMS, Mostafa EAM (2008) Minimizing the quantity of mineral nitrogen fertilization grapevine by using humic acid organic and biofertilizers. Res J Agric Sci 4:46–50

    Google Scholar 

  • Epelde L, Becerril JM, Mijangos I, Garbisu C (2009) Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. J Environ Qual 38:2041–2049. https://doi.org/10.2134/jeq2009.0006

    Article  CAS  PubMed  Google Scholar 

  • Eric N, Lyan B, Pujos-Guillot E, Branlard G, Piquet A (2016) Change in B and E vitamin and lutein, β-sitosterol contents in industrial milling fractions and during toasted bread production. J Cereal Sci 69:290–296

    Article  Google Scholar 

  • Ernst WH (2005) Phytoextraction of mine wastes–options and impossibilities. Chem Erde Geochem 65:29–42. https://doi.org/10.1016/j.chemer.2005.06.001

    Article  CAS  Google Scholar 

  • Ernst WHO (1990) Mine vegetation in Europe. Heavy metal tolerance in plants: Evolutionary aspects 18:21–38

  • Ernst WH, Verkleij J, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248. https://doi.org/10.1111/j.1438-8677.1992.tb01332.x

    Article  CAS  Google Scholar 

  • Faheed FA (2005) Effect of lead stress on the growth and metabolism of Eruca sativa M. seedlings. Acta Agron Hung 53(3):319–327

    Article  CAS  Google Scholar 

  • Fargašová A (2001) Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biol Plant 44:471–473

    Article  Google Scholar 

  • Gallagher D, Johnston KM, Dietrich AM (2001) Fate and transport of copper-based crop protectants in plasticulture runoff and the impact of sedimentation as a best management practice. Water Res 35:2984–2994

    Article  CAS  PubMed  Google Scholar 

  • Gang A, Vyas AL, Vyas H (2013) Toxic effect of heavy metals on germination and seedling growth of wheat. J Environ Res Dev 2:206–213

    Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185. https://doi.org/10.1016/j.plantsci.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Ginn BR, Szymanowski JS, Fein JB (2008) Metal and proton binding onto the roots of Fescue rubra. Chem Geol 253:130–135. https://doi.org/10.1016/j.chemgeo.2008.05.001

    Article  CAS  Google Scholar 

  • Giri SM, Bhattacharjee MK, Singh AKS (2020) Development of a new noncarcinogenic trace metal pollution index for quality ranking of vegetable, rice, and milk. Ecol Indic 113:106214

    Article  CAS  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to trace metal phytoremediation. Planta 223:1115–1122. https://doi.org/10.1007/s00425-006-0225-0

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198. https://doi.org/10.1016/S0005-2736(00)00138-3

    Article  CAS  PubMed  Google Scholar 

  • Guibaud G, Bhatia D, d’Abzac P, Bourven I, Bordas F, Van Hullebusch ED, Lens PN (2012) Cd (II) and Pb (II) sorption by extracellular polymeric substances (EPS) extracted from anaerobic granular biofilms: evidence of a pH sorption-edge. J Taiwan Inst Chem Eng 43:444–449

    Article  CAS  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated trace metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013) Role of phytochelatins in trace metal stress and detoxification mechanisms in plants. Trace metal stress in plants. Springer, Berlin, pp 73–94. https://doi.org/10.1007/978-3-642-38469-1_4

    Chapter  Google Scholar 

  • Gür N, Topdemir A (2008) Effects of some heavy metals on in vitro pollen germination and tube growth of apricot (Armenica vulgaris Lam.) and cherry (Cerasus avium L.). World Appl Sci J 4:195–198

    Google Scholar 

  • Gurave NA, Korde VV, Dhas SS, Disale M (2015) Isolation and identification of trace metal resistant bacteria from petroleum soil of Loni, Ahmednagar. Eur J Exp Biol 5:6–11

    CAS  Google Scholar 

  • Hall J (2002) Cellular mechanisms for trace metal detoxification and tolerance. J Exp Bot 53:1–11. https://doi.org/10.1093/jexbot/53.366.1

    Article  CAS  PubMed  Google Scholar 

  • Hammad SAR, Ali OAM (2014) Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann Agric Sci 59:133–145

    Article  Google Scholar 

  • Harper F, Baker A, Balkwill K, Smith J (1999) Nickel uptake, translocation and hyperaccumulation in Berkheya coddii, In: Proceedings of the 3rd international conference on serpentine ecology, Kruger National Park

  • Hassan T, Bano A, Naz I (2017a) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytorem 19:522–529

    Article  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017b) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Inter J Phytoremed 19:522–529

    Article  Google Scholar 

  • Hossain MB, Sattar MA (2014) Effect of inorganic phosphorus fertilizer and inoculants on yield and phosphorus use efficiency of wheat. J Environ Sci Nat Res 7:75–79

    Google Scholar 

  • Huang H, Gupta DK, Tian S, Yang XE, Li T (2012) Lead tolerance and physiological adaptation mechanism in roots of accumulating and nonaccumulating ecotypes of Sedum alfredii. Environ Sci Pollut Res 19:1640–1651. https://doi.org/10.1007/s11356-011-0675-1

    Article  CAS  Google Scholar 

  • Hussain I, Ashraf MA, Rasheed R, Asghar A, Sajid MA, Iqbal M (2015) Exogenous application of silicon at the boot stage decreases accumulation of cadmium in wheat (Triticum aestivum L.) grains. Braz J Bot 38(2):223–234

    Article  Google Scholar 

  • Hussain I, Siddique A, Ashraf MA, Rasheed R, Ibrahim M, Iqbal M, Akbar S, Imran M (2017) Does exogenous application of ascorbic acid modulate growth, photosynthetic pigments and oxidative defense in okra (Abelmoschus esculentus (L.) Moench) under lead stress? Acta Physiol Plant 39(6):1–3

    Article  CAS  Google Scholar 

  • Ianeva OD (2009) Mechanisms of bacteria resistance to heavy metals. Mikrobiol Z 71:54–65

    CAS  PubMed  Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. https://doi.org/10.1155/2018/2568038

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K (2018) Biological approaches to tackle trace metal pollution: a survey of literature. J Environ Manag 217:56–70. https://doi.org/10.1016/j.jenvman.2018.03.077

    Article  CAS  Google Scholar 

  • Jain S, Arnepalli D (2016) Biominerlization as a remediation technique: A critical review; Proceedings of the Indian geotechnical conference (IGC2016). Chennai India. pp 15- 17

  • Javed MT, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Chapter 20—phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. Cadmium toxicity and tolerance in plants. Academic Press, London, pp 495–529. https://doi.org/10.1016/B978-0-12-814864-8.00020-6

    Chapter  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  CAS  PubMed  Google Scholar 

  • Junli L, Yub L, Lu Y, Niu Y, Liu L, Costa J, Yu L (2012) Phytochemical compositions and antioxidant properties and antiproliferative activities of wheat flour. Food Chem 135:325–331

    Article  Google Scholar 

  • Kalita D, Joshi SR (2017) Study on bioremediation of lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol Rep 16:48–57

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in 10 the remediation of metal contaminated soils. Environ Chem Lett 7:1–9

    Article  Google Scholar 

  • Khan N, Bano A, Babar MDA (2019) The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Arch Microbiol 201:769–785

    Article  CAS  PubMed  Google Scholar 

  • Khunajakr N, Liu CQ, Charoenchai P, Dunn NW (1999) A plasmid-encoded two-component regulatory system involved in copper-inducible transcription in Lactococcus lactis. Gene 229:229–235

    Article  CAS  PubMed  Google Scholar 

  • Khusro A, Preetam Raj JP, Panicker SG (2014) Multiple heavy metals response and antibiotic sensitivity pattern of Bacillus subtilis strain KPA. J Chem Pharm Res 6:532–538

    CAS  Google Scholar 

  • Kosobrukhov A, Knyazeva I, Mudrik V (2004) Plantago major plants responses to increase content of lead in soil: growth and photosynthesis. Plant Growth Regul 42:145–151

    Article  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJ, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638. https://doi.org/10.1038/379635a0

    Article  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and nonaccumulator Thlaspi species. Plant Physiol 122:1343–1354. https://doi.org/10.1104/pp.122.4.1343

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) The use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Kumpiene J, Fitts JP, Mench M (2012) Arsenic fractionation in mine spoils 10 years after aided phytostabilization. Environ Pollut 166:82–88. https://doi.org/10.1016/j.envpol.2012.02.016

    Article  CAS  PubMed  Google Scholar 

  • Kun J, Bingde W, Congyan W, Qiong R (2019) Ecotoxicological effects of elements with different concentrations and types on the morphological and physiological performance of wheat. Ecotoxicol Environ Saf 167:345–353

    Article  Google Scholar 

  • Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011) Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. C R Biol 334(2):118–126

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry 16:1503–1505. https://doi.org/10.1016/0031-9422(77)84010-7

    Article  CAS  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011

  • Lone MI, Raza SH, Muhammad S, Naeem MA, Khalid M (2006) Lead content in soil and wheat tissue along roads with different traffic loads in Rawalpindi district. Pak J Bot 38:1035

    Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotox Environ Safe 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    Article  CAS  Google Scholar 

  • Mahato S, Kafle A (2018) Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Ann Agrarian Sci 16:250–256

    Article  Google Scholar 

  • Mahmood T, Islam KR, Muhammad S (2007) Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot 39(2):451

  • Manara A (2012) Plant responses heavy metals toxicity. In: Furini A (ed) Plants. Springer, Dordrecht, pp 27–53. https://doi.org/10.1007/978-94-007-4441-7_2

    Chapter  Google Scholar 

  • Manuela T, Aquilanti L, Polverigiani S, Osimani A, Garofalo C, Milanovic V, Clementi F (2016) Microbial diversity of type I sourdoughs prepared and back-slopped with wholemeal and refined soft (Triticum aestivum) wheat flours. J Food Sci 81:1996–2005

    Article  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Envirn Pol Issue 132:21–27

    Article  CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of trace metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Env Sci Technol 39:622–654. https://doi.org/10.1080/10643380701798272

    Article  CAS  Google Scholar 

  • Maru V, Gadre S (2016) Melanin pigment production studies from Azotobacter vinelandii. Int J Adv Lif Sci 9:44–49

    CAS  Google Scholar 

  • Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C (2009) Endophytic bacteria from seeds of Nicotiana tabaccum can reduce cadmium phytotoxicity. Int J Phytoremediat 11:251–267. https://doi.org/10.1080/15226510802432678

    Article  CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175. https://doi.org/10.1007/s11356-008-0079-z

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST action 859. J Soil Sediment 10:1039–1070. https://doi.org/10.1007/s11368-010-0190-x

    Article  CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold U (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracoviensia Ser Bot 46:75–85

    Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of trace metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706. https://doi.org/10.3389/fmicb.2017.01706

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghannem SA, Farag MM, Shehab AM, Azab MS (2018) Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Braz J Microbiol 49:452–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohite BV, Koli SH, Patil SV (2018) Trace metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans. Appl Biochem Biotechnol 186:199–216

    Article  CAS  PubMed  Google Scholar 

  • Moustakas OMG, Symeonidis L, Karataglis S (1997) Field study of the effects of excess copper on wheat photosynthesis and productivity. Soil Sci Plant Nutr 43:531–539

    Article  CAS  Google Scholar 

  • Mu’minah B, Subair H, Fahruddin DB (2015) Isolation and screening of exopolysaccharide producing bacterial (EPS) from potato rhizosphere for soil aggregation. Int J Curr Microbiol App Sci 4:341–349

    CAS  Google Scholar 

  • Muthu M, Wu HF, Gopal J, Sivanesan I, Chun S (2017) Exploiting microbial polysaccharides for biosorption of heavy metals in aqueous environments-scope for expansion via nanomaterial intervention. Polymers 9:721. https://doi.org/10.3390/polym9120721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nies DH (1999) Microbial trace-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Nocelli N, Bogino PC, Banchio E, Giordano W (2016) Roles of extracellular polysaccharides and biofilm formation in trace metal resistance of rhizobia. Materials 9:418. https://doi.org/10.3390/ma9060418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS- related redox regulation and signalling in plants. Semin Cell Dev Biol 80:3–12

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Lu X, Lei K (2017) A comprehensive analysis of heavy metals in urban road dust of Xi'an, China: contamination, source apportionment and spatial distribution. Sci Total Environ 609:1361–1369

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2005) Phytoremediation and hyperaccumulator plants. In: Tamas MJ, Martinoia E (eds) Molecular Biology of metal homeostasis and detoxification. Springer, Berlin, pp 299–340. https://doi.org/10.1007/4735_100

    Chapter  Google Scholar 

  • Peralta JR, Torresday G, Tiemann JL, Gomez KJE, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Toxicol 66:727–734

    CAS  PubMed  Google Scholar 

  • Periasamy S, Nair HAS, Lee KWK, Ong J, Goh JQJ, Kjelleberg S, Rice SA (2015) Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance. Front Microbiol 6:851. https://doi.org/10.3389/fmicb.2015.00851

    Article  PubMed  PubMed Central  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, pp 139–236

    Google Scholar 

  • Polle A, Pfirrmann T, Chakrabarti S, Rennenberg H (1993) The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.). Plant Cell Environ 16:311–316

    Article  CAS  Google Scholar 

  • Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. RSC Adv 6:109862–109877

    Article  CAS  Google Scholar 

  • Rai V (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487. https://doi.org/10.1023/A:1022308229759

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71(5):834–842

  • Rao MPN, Xiao M, Li WJ (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8:1113. https://doi.org/10.3389/fmicb.2017.01113

    Article  Google Scholar 

  • Rasulov BA, Yili A, Aisa HA (2013) Biosorption of metal ions by exopolysaccharide produced by Azotobacter chroococcum XU1. J Environ Prot 4:989–993

    Article  Google Scholar 

  • Rehman M, Fahad S, Saleem Mh, Hafeez M, Rahman Mh, Liu F, Deng G (2020a) Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.). Photosynthetica 58:922–931

    Article  CAS  Google Scholar 

  • Rehman M, Saleem MH, Fahad S, Maqbool Z, Peng D, Deng G, Liu L (2020b) Medium nitrogen optimized Boehmeria nivea L. growth in copper contaminated soil. Chemosphere 266:128972

    Article  PubMed  Google Scholar 

  • Rehman M, Yang M, Fahad S, Saleem MH, Liu L, Liu F, Deng G (2020c) Morpho-physiological traits, antioxidant capacity, and nitrogen metabolism in ramie under nitrogen fertilizer. Agron J 112:2988–2997

    Article  CAS  Google Scholar 

  • Rehman M, Saleem MH, Fahad S, Bashir S, Peng D, Deng G, Alamri S, Siddiqui MH, Khan SM, Shah RA (2021) Effects of rice straw biochar and nitrogen fertilizer on ramie (Boehmeria nivea L.) morpho-physiological traits, copper uptake and post-harvest soil characteristics, grown in an aged-copper contaminated soil. J Plant Nutr 45:1–14

    Google Scholar 

  • Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053

    Article  CAS  PubMed  Google Scholar 

  • Rizvi A, Khan MS (2019) Putative role of bacterial biosorbent in metal sequestration revealed by SEM–EDX and FTIR. Indian J Microbiol. https://doi.org/10.1007/s12088-019-00780-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizvi A, Ahmed B, Zaidi A, Khan MS (2019) Trace metal mediated phytotoxic impact on winter wheat: oxidative stress and microbial management of toxicity by Bacillus subtilis BM2. RSC Adv 9:6125–6142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Javed MR, Bashir A (2018) Lead toxicity in cereals and its management strategies: a critical review. Water Air Soil Pollut 229:1–16

    Article  CAS  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PE (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56. https://doi.org/10.1023/A:1004328816645

    Article  CAS  Google Scholar 

  • Robinson BH, Lombi E, Zhao FJ, Mcgrath SP (2003) Uptake and distribution of nickel and other elements in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285. https://doi.org/10.1046/j.1469-8137.2003.00743.x

    Article  CAS  Google Scholar 

  • Roman-Ponce B, Reza-Vázquez DM, Gutierrez-Paredes S, María de Jesús DE, Maldonado-Hernandez J, Bahena-Osorio Y, Vásquez-Murrieta MS (2017) Plant growth-promoting traits in rhizobacteria of trace metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere 27(3):511–526

    Article  CAS  Google Scholar 

  • Roy SB, Bera A (2002) Individual and combined effect of mercury and manganese on phenol and proline content in leaf and stem of mungbean seedlings. J Environ Biol 23:433–435

    CAS  PubMed  Google Scholar 

  • Saleem MH, Ali S, Rehman M, Hasanuzzaman M, Rizwan M, Irshad S, Shafiq F, Iqbal M, Alharbi BM, Alnusaire TS (2020a) Jute: a potential candidate for phytoremediation of metals—a review. Plants 9:258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem MH, Fahad S, Adnan M, Ali M, Rana MS, Kamran M, Ali Q, Hashem IA, Bhantana P, Ali M, Hussain RM (2020b) Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environ Sci Pollut Res 27:37121–37133

    Article  CAS  Google Scholar 

  • Saleem MH, Fahad S, Khan SU, Ahmar S, Khan MHU, Rehman M, Maqbool Z, Liu L (2020c) Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. Ecotoxicol Environ Saf 189:109915

    Article  CAS  PubMed  Google Scholar 

  • Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AEL, Hossain A, Llanes A, Liu L (2020d) Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ Sci Pollut Res 27:5211–5221

    Article  CAS  Google Scholar 

  • Saleem MH, Fahad S, Rehman M, Saud S, Jamal Y, Khan S, Liu L (2020e) Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. PeerJ 8:e8321

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem MH, Rehman M, Fahad S, Tung S, Iqbal N, Hassan A, Ayub A, Wahid MA, Shaukat S, Liu L, Deng G (2020f) Leaf gas exchange, oxidative stress, and physiological attributes of rapeseed (Brassica napus L.) grown under different light-emitting diodes. Photosynthetica 58:836–845

    Article  CAS  Google Scholar 

  • Saleem MH, Wang X, Ali S, Zafar S, Nawaz M, Adnan M, Fahad S, Shah A, Alyemeni MN, Hefft DI, Ali S (2021) Interactive effects of gibberellic acid and NPK on morpho-physio-biochemical traits and organic acid exudation pattern in coriander (Coriandrum sativum L.) grown in soil artificially spiked with boron. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2021.09.015

    Article  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I (1995) Phytoremediation: a novel strategy for the removal of toxic elements from the environment using plants. Nat Biotechnol 13:468–474. https://doi.org/10.1038/nbt0595-468

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Phys 49:643–668. https://doi.org/10.1146/annurev.arplant.49.1.643

    Article  CAS  Google Scholar 

  • Sarker A, Talukder NM, Islam MT (2014) Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat. Plant Sci Today 1:86–93

    Article  Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130(4):1815–1826

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Dumat C (2015) Trace metal stress and crop productivity. Crop production and global environmental issues. Springer, Cham, pp 1–25

    Google Scholar 

  • Shahid M, Camill D, Sana K, Schreck E, Xiong T, Nabeel KN (2017) Foliar trace metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to trace metal stress. J Exp Bot 57:711–726. https://doi.org/10.1093/jxb/erj073

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Sheng GP, Xu J, Li WH, Yu HQ (2013) Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge. Chemosphere 93:1436–1441

    Article  CAS  PubMed  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of elements from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214. https://doi.org/10.1080/10643380902718418

    Article  Google Scholar 

  • Shewry PR (2018) Do ancient types of wheat have health benefits compared with modern bread wheat? J Cereal Sci 79:469–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinwari KI, Shah A, Afridi MI, Zeeshan M, Hussain H, Hussain J, Ahmad O, Jamil M (2015) Application of plant growth promoting rhizobacteria in bioremediation of trace metal polluted soil. Asian J Multidiscip Stud 3:179–185

    Google Scholar 

  • Shoeb E, Badar U, Akhter J, Shams H, Sultana M (2012) Horizontal gene transfer of stress resistance genes through plasmid transport. World J Microbiol Biotechnol 28:1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Singh CM (2000) Effect of potassium application in rice-wheat cropping system. Indian J Agron 45:12–20

    Google Scholar 

  • Singh RP, Kumar M, Jaiwal PK (2008) Improvement in nitrogen use efficiency and yield of crop plants by sustained nutrient supply and enhanced nitrogen assimilation. In: Bose B, Hemantranjan A (eds) Development in physiology, biotechnology and molecular biology of plants. New Delhi Publishing Agency, New Delhi, pp 1–31

    Google Scholar 

  • Sivapriya SL, Priya PR (2017) Selection of hyper exopolysaccharide producing and cyst forming Azotobacter isolates for better survival under stress conditions. Int J Curr Microbiol App Sci 6:2310–2320

    Article  CAS  Google Scholar 

  • Soto J, Ortiz J, Herrera H, Fuentes A, Almonacid L, Charles TC, Arriagada C (2019) Enhanced arsenic tolerance in Triticum aestivum inoculated with arsenic-resistant and plant growth promoter microorganisms from a trace metal-polluted soil. Microorganisms 7:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava V, Sarkar A, Singh S, Singh P, de Araujo AS, Singh RP (2017) Agroecological responses of trace metal pollution with special emphasis on soil health and plant performances. Front Environ Sci 5:64. https://doi.org/10.3389/fenvs.2017.00064

    Article  Google Scholar 

  • Stanis˘ić Stojić SM, Ignjatović LM, Popov S, Škrivanj S, Đorđević AR, Stojić A (2016) Trace 8 metal accumulation in wheat and barley: the effects of soil presence and liquid manure 9 amendment. Plant Biosyst 150:104–110

    Article  Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476. https://doi.org/10.3389/fpls.2018.01476

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun RL, Zhou QX, Jin CX (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134. https://doi.org/10.1007/s11104-006-0064-6

    Article  CAS  Google Scholar 

  • Tariq M, Ahmad B, Adnan M, Mian IA, Khan S, Fahad S, Saleem MH, Ali M, Mussarat M, Ahmad M, Romman M, Chattha MS, El-Sheikh MA, Ali S (2022) Improving boron use efficiency via different application techniques for optimum production of good quality potato (Solanum tuberosum L.) in alkaline soil. PLoS ONE 17:e0259403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarangini K, Mishra S (2013). Production, characterization and analysis of melanin from isolated marine Pseudomonas sp. using vegetable waste. Res J Eng Sci 2278:9472

  • Terry N, Carlson C, Raab T, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344. https://doi.org/10.2134/jeq1992.00472425002100030006x

    Article  CAS  Google Scholar 

  • Thaira H, Raval K, Manirethan V, Balakrishnan RM (2018) Melanin nano-pigments for trace metal remediation from water. Sep Sci Technol 2:1–10

    Google Scholar 

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:206. https://doi.org/10.1007/s10661-016-5211-9

    Article  PubMed  Google Scholar 

  • Tiffin LO (1970) Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiol 45:280–283. https://doi.org/10.1104/pp.45.3.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari K, Singh NK, Rai UN (2013) Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake. Bull Environ Contam Toxicol 91:339–344

    Article  CAS  PubMed  Google Scholar 

  • Tomé FV, Rodríguez PB, Lozano J (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:351–357. https://doi.org/10.1016/j.scitotenv.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9. https://doi.org/10.1016/j.tplants.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  • Turk H, Erdal S, Karayel U, Dumlupinar R (2018) Attenuation of lead toxicity by promotion of tolerance mechanism in wheat roots by lipoic acid. Cereal Res Commun 46:424–435

    Article  CAS  Google Scholar 

  • Ullah I et al (2022) Comparative effects of biochar and NPK on wheat crops under different management systems. Crop Pasture Sci. https://doi.org/10.1071/CP21146

    Article  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. https://doi.org/10.1007/s10311-009-0268-0

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794. https://doi.org/10.1007/s11356-009-0213-6

    Article  CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093. https://doi.org/10.1104/pp.92.4.1086

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111(5):1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780. https://doi.org/10.1016/S0045-6535(02)00232-1

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Bernard SM, Anderson GL, Chen W (2009) Developing microbe-interactions for applications in plant growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbiol Biotechnol 2:428–440

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol 2011:402647. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Xiong Y, Zhu F, Zhao L, Jiang H, Zhang Z (2014) Trace metal speciation in various types of fly ash from municipal solid waste incinerator. J Mater Cycles Waste Manag 16:608–615

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in trace metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

  • Yuhong S, Liang Y (2013) The foliar uptake and downward translocation of trichloroethylene and 1,2,3-trichlorobenzene in air-plant-water systems. J Hazard Mater 25:300–305

    Google Scholar 

  • Zhang Z, Cai R, Zhang W, Fu Y, Jiao N (2017) A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Mar Drugs 15:175. https://doi.org/10.3390/md15060175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Cao F, Zhang H, Zhang L, Zhang F, Liang X (2014) Structural characterization and biosorption of exopolysaccharides from Anoxybacillus sp. R4–33 isolated from radioactive radon hot spring. Appl Biochem Biotechnol 172:2732–2746

    Article  CAS  PubMed  Google Scholar 

  • Zhiyuan L, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil trace metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 14:843–853

    Google Scholar 

  • Zhu D, Ouyang L, Xu Z, Zhang L (2015) Rhizobacteria of Populus euphratica promoting plant growth against heavy metals. Int J Phytoremed 17(10):973–980

    Article  CAS  Google Scholar 

  • Zivkovic LI, Rikalovic M, Cvijovic GG, Kazazic S, Vrvic M, Brceski I, Beskoski V, Loncarevic B, Gopcevic K, Karadzic I (2018) Cadmium specifc proteomic responses of a highly resistant Pseudomonas aeruginosa san ai. RSC Adv 8:10549–10560

    Article  Google Scholar 

  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq AMZ (2019) Lead toxicity in plants: impacts and remediation. J Environ Manag 250:109557

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors in this review article have made a considerable, direct, and intellectual contribution to the work, and approved it for publication.

Corresponding authors

Correspondence to Muhammad Hamzah Saleem or Shah Fahad.

Additional information

Handling Editor: Vijay Pratap Singh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, I., Afzal, S., Ashraf, M.A. et al. Effect of Metals or Trace Elements on Wheat Growth and Its Remediation in Contaminated Soil. J Plant Growth Regul 42, 2258–2282 (2023). https://doi.org/10.1007/s00344-022-10700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10700-7

Keywords

Navigation