Skip to main content
Log in

Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Influence of 100 mM NaCl and 50 μM salicylic acid (SA) and their combination on the metabolism of chamomile (Matricaria chamomilla) during 7 days was studied. NaCl reduced growth and selected physiological parameters and SA in combined treatment (NaCl + SA) reversed majority of these symptoms. Application of SA reduced NaCl-induced increase of Na+ in the rosettes, but not in the roots. Accumulation of total amino acids was stimulated in NaCl-treated roots, especially due to exceptional increase of proline (4.4-fold). Among phenolic acids, accumulation of protocatechuic acid was the most enhanced in NaCl-exposed leaf rosettes (ca. 3-fold) while chlorogenic and caffeic acids in the roots (2.4- and 2.8-fold, respectively). Total soluble phenols increased after NaCl and SA treatments, but root lignin content was not affected. Activity of phenylalanine ammonia-lyase and shikimate dehydrogenase increased in response to NaCl, but cinnamyl alcohol dehydrogenase was not affected and polyphenol oxidase decreased. Stress parameters were elevated by NaCl treatment (superoxide radical and malondialdehyde content, activities of catalase, ascorbate- and guaiacol-peroxidase) and substantially prevented by SA, while accumulation of hydrogen peroxide decreased. Overall, SA showed strong beneficial properties against NaCl-induced negative symptoms. Protective effect of SA was the most visible at the level of guaiacol-peroxidase and through amelioration of stress parameters and mineral nutrient contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAD:

Cinnamyl alcohol dehydrogenase

DW:

Dry weight

MDA:

Malondialdehyde

PAL:

Phenylalanine ammonia-lyase

PPO:

Polyphenol oxidase

ROS:

Reactive oxygen species

SKDH:

Shikimate dehydrogenase

References

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030. doi:10.1104/pp.126.3.1024

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761. doi:10.1007/s00425-006-0386-x

    Article  CAS  Google Scholar 

  • dos Santos WD, Ferrarese MLL, Ferrarese-Filho O (2006) High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant Physiol Biochem 44:511–515. doi:10.1016/j.plaphy.2006.08.004

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620. doi:10.1016/0003-2697(76)90488-7

    Article  CAS  Google Scholar 

  • Grassmann J, Hippeli S, Elstner EF (2002) Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol Biochem 40:471–478. doi:10.1016/S0981-9428(02)01395-5

    Article  CAS  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749. doi:10.1016/j.envpol.2006.09.007

    Article  CAS  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signalling. J Plant Growth Regul 26:290–300. doi:10.1007/s00344-007-9017-4

    Article  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89. doi:10.1007/s11738-007-0093-7

    Article  CAS  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58:415–424. doi:10.1093/jxb/erl216

    Article  CAS  Google Scholar 

  • Kocúrik Š, Kopka J, Grejtovský A, Bušová D, Spalek L, Ondrejčák F, Hončariv R (1978) Sadrovať, či nesadrovať? Naše liečivé rastliny 15:138–141 (in Slovak)

    Google Scholar 

  • Kováčik J, Bačkor M (2007) Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants. Plant Soil 297:255–265. doi:10.1007/s11104-007-9346-x

    Article  Google Scholar 

  • Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615. doi:10.1007/s00299-007-0490-9

    Article  Google Scholar 

  • Kováčik J, Klejdus B, Bačkor M, Repčák M (2007) Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci 172:393–399. doi:10.1016/j.plantsci.2006.10.001

    Article  Google Scholar 

  • Kováčik J, Klejdus B, Kaduková J, Bačkor M (2009a) Physiology of Matricaria chamomilla exposed to nickel excess. Ecotoxicol Environ Saf 72:603–609. doi:10.1016/j.ecoenv.2007.12.013

    Article  Google Scholar 

  • Kováčik J, Grúz J, Bačkor M, Strnad M, Repčák M (2009b) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143. doi:10.1007/s00299-008-0627-5

    Article  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Štork F, Bačkor M (2009c) Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil (in press). doi:10.1007/s11104-009-9889-0

  • Mehta SK, Gaur JP (1999) Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259. doi:10.1046/j.1469-8137.1999.00447.x

    Article  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281. doi:10.1104/pp.102.018457

    Article  CAS  Google Scholar 

  • Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97:452–458. doi:10.1016/j.foodchem.2005.05.024

    Article  Google Scholar 

  • Passardi E, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265. doi:10.1007/s00299-005-0972-6

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. doi:10.1016/0891-5849(95)02227-9

    Article  CAS  Google Scholar 

  • Roussos PA, Pontikis CA (2003) Long term effects of sodium chloride salinity on growing in vitro, proline and phenolic compound content of jojoba explants. Eur J Hortic Sci 68:38–44

    CAS  Google Scholar 

  • Roussos PA, Gasparatos D, Tsantili E, Pontikis CA (2007) Mineral nutrition of jojoba explants in vitro under sodium chloride salinity. Sci Hortic (Amsterdam) 114:59–66. doi:10.1016/j.scienta.2007.05.001

    Article  CAS  Google Scholar 

  • Sánchez-Aguayo I, Rodríguez-Galán JM, Garcia R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta 220:278–285. doi:10.1007/s00425-004-1350-2

    Article  Google Scholar 

  • Sawada H, Shim IS, Usui K, Kobayashi K, Fujihara S (2008) Adaptive mechanism of Echinochloa crus-galli Beauv. var. formosensis Ohwi under salt stress: effect of salicylic acid on salt sensitivity. Plant Sci 174:583–589. doi:10.1016/j.plantsci.2008.03.013

    Article  CAS  Google Scholar 

  • Shakirova FE, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322. doi:10.1016/S0168-9452(02)00415-6

    Article  CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J (2008) Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot 62:60–68. doi:10.1016/j.envexpbot.2007.07.006

    Article  CAS  Google Scholar 

  • Wildermuth MC (2006) Variations on a theme: synthesis and modification of plant benzoic acids. Curr Opin Plant Biol 9:288–296. doi:10.1016/j.pbi.2006.03.006

    Article  CAS  Google Scholar 

  • Xu Q, Xu X, Zhao Y, Jiao K, Herbert JS, Hao L (2008) Salicylic acid, hydrogen peroxide and calcium-induced salinity tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul 54:249–259. doi:10.1007/s10725-007-9247-2

    Article  CAS  Google Scholar 

  • Yang Y, Xu S, An L, Chen N (2007) NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J Plant Physiol 164:1429–1435. doi:10.1016/j.jplph.2006.08.009

    Article  CAS  Google Scholar 

  • Yazici I, Türkan I, Hediye Sekmen A, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lover level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57. doi:10.1016/j.envexpbot.2007.02.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic (GA ČR 521/02/1367) and partially by the grant of Šafárik University rector for young scientists (to JK, no. VVGS 1/09-10). The authors are grateful to Mrs. Anna Michalčová and BSc. František Štork for their excellent technical assistance and to Prof. Dianne Fahselt (University of Western Ontario, Canada) for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Kováčik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kováčik, J., Klejdus, B., Hedbavny, J. et al. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 18, 544–554 (2009). https://doi.org/10.1007/s10646-009-0312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0312-7

Keywords

Navigation