Skip to main content
Log in

Overexpression of the Brassinosteroid Biosynthetic Gene AtDWF4 in Arabidopsis Seeds Overcomes Abscisic Acid-induced Inhibition of Germination and Increases Cold Tolerance in Transgenic Seedlings

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are essential for proper plant growth and development and also protect plants from a variety of environmental stresses. Seeds contain relatively high levels of BRs, and BRs have been implicated in embryonic patterning and germination. How BR levels in seeds impact germination, growth, and stress tolerance in early seedlings is currently not known. To assess this, the BR biosynthetic gene AtDWF4 was overexpressed in Arabidopsis under the control of a seed-specific oleosin promoter. The resulting transgenic seedlings could overcome inhibition of germination caused by exogenous abscisic acid (ABA) and the seedlings were more tolerant to cold stress compared to wild-type and vector control seedlings. Transcript levels of COR15A, a cold-responsive gene with an established function in cold tolerance, were approximately twofold higher in transgenic seedlings than in control seedlings under cold conditions. These results establish a role for BRs in opposing the inhibitory effects of ABA in seed germination and in promoting cold stress tolerance in early Arabidopsis seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  PubMed  Google Scholar 

  • Chalker-Scott L, Scott J (2004) Elevated ultraviolet-B radiation induces cross-protection to cold in leaves of Rhododendron under field conditions. Photochem Photobiol 79:199–204

    Article  CAS  PubMed  Google Scholar 

  • Chandler J, Cole M, Flier A, Werr W (2009) BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNRÖSCHEN and DORNRÖSCHEN-LIKE. Plant Mol Biol 69:57–68

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross A, Tax F, Yoshida S, Feldmann K (2000) Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21:431–443

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    Article  CAS  PubMed  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P (1999) Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 2:333–342

    Article  Google Scholar 

  • Dhaubhadel S, Browning K, Gallie D, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J 29:681–691

    Article  CAS  PubMed  Google Scholar 

  • Divi UK, Krishna P (2009a) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26(3–4):131–136

    Article  CAS  Google Scholar 

  • Divi UK, Krishna P (2009b) Brassinosteroids confer stress tolerance. In: Hirt H (ed) Plant stress biology: genomics goes systems biology. Wiley-VCH, Weinheim, pp 119–135

    Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feild T, Lee D, Holbrook N (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol 127:566–574

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Noguchi T, Yokota T, Takatsuto S, Yoshida S (1998) Brassinosteroids in Arabidopsis thaliana. Phytochemistry 48:595–599

    Article  CAS  PubMed  Google Scholar 

  • Fukuta N, Fukuzono K, Kawaide H, Abe H, Nakayama M (2006) Physical restriction of pods causes seed size reduction of a brassinosteroid-deficient faba bean (Vicia faba). Ann Bot 97:65–69

    Article  CAS  PubMed  Google Scholar 

  • He RY, Wang GJ, Wang XS (1991) Effects of brassinolide on growth and chilling resistance of maize seedlings. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: chemistry, bioactivity and applications, ACS Symp. Ser. 47. American Chemical Society, Washington, DC, pp 220–230

    Chapter  Google Scholar 

  • Huang AHC (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Article  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kamuro Y, Takatsuto S (1991) Capability for and problems of practical uses of brassinosteroids. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: chemistry, bioactivity and applications, ACS Symp. Ser. 47. American Chemical Society, Washington, DC, pp 292–297

    Chapter  Google Scholar 

  • Katsumi M (1991) Physiological modes of brassinolide action in cucumber hypocotyl growth. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: chemistry, bioactivity and applications, ACS Symp. Ser. 47. American Chemical Society, Washington, DC, pp 246–254

    Chapter  Google Scholar 

  • Khripach V, Zhabinskii V, de Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140:548–557

    Article  CAS  PubMed  Google Scholar 

  • Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466

    Article  CAS  PubMed  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213:758–763

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Thomashow M (1992) DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol 99:519–525

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y (2007) GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J 51:419–430

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Fujioka S, Takatsuto S, Sakurai A, Yoshida S, Li J, Chory J (1999) Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5alpha-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiol 120:833–840

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Jager CE, Kitasaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takatsuto S, Fujioka S, Smith JJ, Kerckhoffs LH, Reid JB, Yokota T (2004) Brassinosteroid deficiency due to truncated steroid 5alpha-reductase causes dwarfism in the lk mutant of pea. Plant Physiol 135:2220–2229

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Ueno M, Yamada Y, Takatsuto S, Takeuchi Y, Yokota T (2007) Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiol 143:1680–1688

    Article  CAS  PubMed  Google Scholar 

  • Plant AL, van Rooijen GJ, Anderson CP, Moloney MM (1994) Regulation of an Arabidopsis oleosin gene promoter in transgenic Brassica napus. Plant Mol Biol 25:193–205

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    Article  CAS  PubMed  Google Scholar 

  • Sasse J (2002) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287–297

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15A gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The Botany Array Resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hua J (2009) A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance. Plant J 60(2):340–349

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SFF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci USA 105:7618–7623

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA 106:4543–4548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank SemBioSys Inc. (Calgary, Alberta, Canada) for kindly providing the plasmid pSBS3062, and Harpreet Jammu and Debbie Dong for their help in screening the transgenic plants. This research was supported by grants to P.K. from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Krishna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divi, U.K., Krishna, P. Overexpression of the Brassinosteroid Biosynthetic Gene AtDWF4 in Arabidopsis Seeds Overcomes Abscisic Acid-induced Inhibition of Germination and Increases Cold Tolerance in Transgenic Seedlings. J Plant Growth Regul 29, 385–393 (2010). https://doi.org/10.1007/s00344-010-9150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-010-9150-3

Keywords

Navigation