Skip to main content
Log in

The concept of 2D gated imaging for particle sizing in a laminar diffusion flame

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, time-resolved laser-induced incandescence (TiRe LII) has been employed to measure primary particle diameters of soot in an atmospheric laminar ethylene diffusion flame. The generated data set complements existing data determined in one single location and takes advantage of the good spatial resolution of the ICCD detection. Time resolution is achieved by shifting the camera gate along the LII decay. One key input parameter for the analysis of time-resolved LII is the local flame temperature. This was determined on a grid throughout the flame by coherent anti-Stokes Raman scattering. The accurate temperature data, in combination with other published data from this flame, are well suited for soot model validation purposes while we showed feasibility of a shifted gate approach to deduce 2D particle sizes in the chosen standard flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(\dot{Q}_{\text{int}} = \rho {\kern 1pt} c\frac{{\pi D^{3} }}{6}\frac{{{\text{d}}T_{\text{P}} }}{{{\text{d}}t}}\) :

Change of internal energy of the soot particle

\(\dot{Q}_{\text{abs}} = \alpha_{{\lambda ,{\text{las}}}} \frac{{\pi D^{2} }}{4}q(t)\) :

Rate of energy absorption from the laser pulse

\(\alpha_{{\lambda ,{\text{las}}}} = \frac{4\pi D}{{\lambda_{\text{las}} }}E(m)\) :

Absorption efficiency of soot

\(\dot{Q}_{\text{sub}} = \, - \frac{{\Updelta H_{\text{v}} }}{{M_{\text{v}} }}\frac{{{\text{d}}m}}{{{\text{d}}t}}\) :

Rate of heat loss by soot surface sublimation

\(\dot{Q}_{\text{cond}} = \,h_{\text{cond}} \pi D^{2} \left( {T_{\text{p}} - T_{\text{g}} } \right)\,\) :

Heat conduction to ambient gaseous species due to collisions

\(\dot{Q}_{\text{rad}} = \,\pi D^{2} \int_{\,0}^{\,\infty } {\varepsilon_{\lambda } {\kern 1pt} M_{\lambda }^{0} } {\text{d}}\lambda\) :

Blackbody-like LII radiation

c :

Soot heat capacity

C opt :

Optical function (detection system response)

D 0 :

Primary particle diameter without laser excitation, m

CMD:

Count median diameter of log-normal distribution of primary particle diameters, m

D :

Particle diameter, m

E(m) = 0.232 + 1.2546 × 10+5 λ :

Refractive index function

F :

Laser fluence, W/m2

f v :

Soot volume fraction, ppm

h cond :

Heat transfer coefficient, containing thermal accommodation coefficient α T, W m−2

M 0 :

Blackbody spectral radiation, W m−2 m−1

M v :

Molar mass of soot vapor, kg mol−1

m :

Particle mass, kg

N p :

Number density of the soot particles, m−3

q(t):

Temporal laser intensity profile, W m−2

R :

Particle radius, m

S LII :

LII signal

T p :

Particle temperature, K

T g :

Gas temperature, K

t :

Time, s

U :

Velocity, m/s

V :

Probe volume, m3

α T :

Thermal accommodation coefficient

β :

Mass accommodation coefficient

ΔH v :

Enthalpy of vaporization, J mol−1

ε :

Emissivity of soot, containing E(m)

λ :

Wavelength, m

ρ :

Density, kg m−3 (soot or ambient gas)

σ g :

Geometric width of a log-normal distribution

abs:

Absorption

cond:

Conduction

det:

Detection

sub:

Sublimation

exc:

Excitation

g:

Gas

int:

Internal

las:

Laser

rad:

Radiation

v:

Vapor

References

  1. Environmental Protection Agency (EPA), Health effects assessment document for diesel engine exhaust. EPA/600/8-90/057F. May 2002

  2. M.Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–697 (2001)

    Article  ADS  Google Scholar 

  3. D.S. Lee, D.W. Fahey, P.M. Forster, P.J. Newton, R.C.N. Wit, L.L. Lim, B. Owen, R. Sausen, Aviation and global climate change in the 21st century. At. Environ. 43, 3520–3537 (2009)

    Article  Google Scholar 

  4. U. Burkhardt, B. Kärcher, Global radiative forcing from contrail cirrus. Nat. Clim. Change 1, 54–58 (2011)

    Article  ADS  Google Scholar 

  5. C. Azar, D.J.A. Johansson, Valuing the non-CO2 climate impacts of aviation. Clim. Change 111, 559–579 (2012)

    Article  Google Scholar 

  6. H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames. Proc. Combust. Inst. 27, 1613–1621 (1998)

    Google Scholar 

  7. H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, Two dimensional imaging of sizes and number densities of nanoscaled particles. In: Proceedings of 10th International Symposium on Applications of Laser Technologies to Fluid Mechanics, Lissabon, Portugal, 2000

  8. O. Angrill, H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, Influence of exhaust gas recirculation on soot formation in diffusion flames. Proc. Combust. Inst. 28, 2643–2649 (2000)

    Article  Google Scholar 

  9. H. Bladh, P. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, P. Desgroux, Experimental and theoretical comparison of spatially resolved laser-induced incandescence signals of soot in backward and right-angle configuration. Appl. Phys. B 83, 423–433 (2006)

    Article  ADS  Google Scholar 

  10. J.A. Pinson, D.L. Mitchell, R.J. Santoro, T.A. Litzinger, Quantitative, planar soot measurements in a D.I. diesel engine using laser-induced incandescence and light scattering, SAE Paper 932650 Warrendale, PA, 1993

  11. K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D. Wang, Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar flame. Combust. Flame 138, 195–198 (2004)

    Article  Google Scholar 

  12. S. Will, S. Schraml, A. Leipertz, Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. Opt. Lett. 20, 2342–2344 (1995)

    Article  ADS  Google Scholar 

  13. J. Johnsson, Laser-induced incandescence for soot diagnostics: theoretical investigation and experimental development, PhD Thesis, Division of Combustion Physics, Department of Physics, Lund University (2012)

  14. S. Will, S. Schraml, K. Bader, A. Leipertz, Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Appl. Opt. 37, 5647–5658 (1998)

    Article  ADS  Google Scholar 

  15. S. Will, S. Schraml, A. Leipertz, Comprehensive two-dimensional soot diagnostics based on LII. Proc. Combust. Inst. 26, 2277–2284 (1996)

    Google Scholar 

  16. R.A. Dobbins, R.J. Santoro, H.G. Semerjian, Analysis of light scattering from soot using optical cross sections for aggregates. Proc. Combust. Inst. 23, 1525–1532 (1990)

    Google Scholar 

  17. K.A. Thomson, K.P. Geigle, M. Köhler, G.J. Smallwood, D.R. Snelling, Optical properties of pulse laser heated soot. Appl. Phys. B 104, 307–319 (2011)

    Article  ADS  Google Scholar 

  18. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Appl. Opt. 38, 2478–2485 (1999)

    Article  ADS  Google Scholar 

  19. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Laser-induced incandescence: recent trends and current questions. Appl. Phys. B 83, 333–354 (2006)

    Article  ADS  Google Scholar 

  20. M. Charwath, R. Suntz, H. Bockhorn, Influence of the temporal response of the detection system on time-resolved laser-induced incandescence signal evolutions. Appl. Phys. B 83, 435–442 (2006)

    Article  ADS  Google Scholar 

  21. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Soot temperature measurements and implications on time-resolved laser-induced incandescence (TIRE-LII). Combust. Flame 120, 439–450 (2000)

    Article  Google Scholar 

  22. Sample III Research Project EASA.2010.FC10–SC.02, http://easa.europa.eu/safety-and-research/research-projects/docs/environment/SAMPLE%20III-SC02%20Final%20report.pdf

  23. R. Hadef, K.P. Geigle, W. Meier, M. Aigner, Soot characterization with laser-induced incandescence applied to a laminar premixed ethylene-air flame. Int. J. Therm. Sci. 49, 1457–1467 (2010)

    Article  Google Scholar 

  24. L.E. Fried, W.M. Howard, Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Phys. Rev. B 61, 8734–8743 (2000)

    Article  ADS  Google Scholar 

  25. H.A. Michelsen, Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118, 7012–7045 (2003)

    Article  ADS  Google Scholar 

  26. S.S. Krishnan, K.-C. Lin, G.M. Faeth, Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames. J. Heat Transf. 122, 517–524 (2000)

    Article  Google Scholar 

  27. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combust. Flame 136, 180–190 (2004)

    Article  Google Scholar 

  28. A.V. Filippov, D.E. Rosner, Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime. Int. J. Heat Mass Transf. 43, 127–138 (2000)

    Article  MATH  Google Scholar 

  29. J. Hager, D. Glatzer, H. Walther, H. Kuze, M. Fink, Rotationally excited NO molecules incident on a graphite surface: molecular rotation and translation after scattering. Surf. Sci. 374, 181–190 (1997)

    Article  ADS  Google Scholar 

  30. L.A. Melton, Soot diagnostics based on laser heating. Appl. Opt. 23, 2201–2208 (1984)

    Article  ADS  Google Scholar 

  31. M. Kholghy, M. Saffaripour, C. Yip, M.J. Thomson (2013) The evolution of soot morphology in an atmospheric laminar coflow diffusion flame of a surrogate for Jet A-1, Combust. Flame (in press)

  32. J. Johnsson, H. Bladh, P.-E. Bengtsson, On the influence of bimodal size distributions in particle sizing using laser-induced incandescence. Appl. Phys. B 99, 817–823 (2010)

    Article  ADS  Google Scholar 

  33. W.C. Hinds, Aerosol Technology (Wiley, New York, 1982)

    Google Scholar 

  34. R.L. Vander Wal, K. Jensen, Laser-induced incandescence: excitation intensity. Appl. Opt. 37, 1607–1616 (1998)

    Article  ADS  Google Scholar 

  35. F. Liu, H. Guo, G.J. Smallwood, Ö.L. Gülder, Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. J. Quant. Spectrosc. Rad. Transf. 73, 409–421 (2002)

    Article  ADS  Google Scholar 

  36. M.D. Smooke, C.S. McEnally, L.D. Pfefferle, R.J. Hall, M.B. Colket, Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combust. Flame 117, 117–139 (1999)

    Article  Google Scholar 

  37. S. Trottier, H. Guo, G.J. Smallwood, M.R. Johnson, Measurement and modeling of the sooting propensity of binary fuel mixtures. Proc. Combust. Inst. 31, 611–619 (2007)

    Article  Google Scholar 

  38. Ö.L. Gülder, D.R. Snelling, R.A. Sawchuk, Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames. Proc. Combust. Inst. 26, 2351–2358 (1996)

    Google Scholar 

  39. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, E.J. Weckman, R.A. Fraser, Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J. 40, 1789–1795 (2002)

    Article  ADS  Google Scholar 

  40. D.R. Snelling, R.A. Sawchuk, G.J. Smallwood, T. Parameswaran, An improved CARS spectrometer for single-shot measurements in turbulent combustion. Rev. Sci. Instrum. 63, 5556–5564 (1992)

    Article  ADS  Google Scholar 

  41. D.R. Snelling, R.A. Sawchuk, T. Parameswaran, Noise in single-shot broadband coherent anti-Stokes Raman spectroscopy that employs a modeless dye laser. Appl. Opt. 33, 8295–8301 (1994)

    Article  ADS  Google Scholar 

  42. P.-E. Bengtsson, M. Aldén, S. Kroll, D. Nilsson, Vibrational CARS thermometry in sooty flames: quantitative evaluation of C2 absorption interference. Combust. Flame 82, 199–210 (1990)

    Article  Google Scholar 

  43. M.S. Tsurikov, K.P. Geigle, V. Krüger, Y. Schneider-Kühnle, W. Stricker, R. Lückerath, R. Hadef, M. Aigner, Laser-based investigation of soot formation in laminar premixed flames at atmospheric and elevated pressures. Combust. Sci. Technol. 177, 1835–1862 (2005)

    Article  Google Scholar 

  44. F. Beyrau, A. Datta, T. Seeger, A. Leipertz, Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames. J. Raman Spectrosc. 33, 919–924 (2002)

    Article  ADS  Google Scholar 

  45. W.S. Cleveland, S.J. Devlin, Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988)

    Article  MATH  Google Scholar 

  46. U. Vandsburger, I. Kennedy, I. Glassman, Sooting counterflow diffusion flames with varying oxygen index. Combust. Sci. Technol. 39, 263–285 (1984)

    Article  Google Scholar 

  47. K.M. Leung, R.P. Lindstedt, W.P. Jones, A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame 87, 289–305 (1991)

    Article  Google Scholar 

  48. J.H. Kent, H.G. Wagner, Temperature and fuel effects in sooting diffusion flames. Proc. Combust. Inst. 20, 1007–1015 (1984)

    Google Scholar 

  49. L.R. Boedeker, G.M. Dobbs, CARS temperature measurements in sooting laminar diffusion flames. Combust. Sci. Technol. 46, 301–323 (1986)

    Article  Google Scholar 

  50. G.H. Markstein, Relationship between soot point and radiant emission from buoyant turbulent and laminar diffusion flames. Proc. Combust. Inst. 20, 1055–1061 (1984)

    Google Scholar 

  51. R.J. Santoro, H.G. Semerjian, Soot formation in diffusion flames: flow rate, fuel species and temperature effects. Proc. Combust. Inst. 20, 997–1006 (1984)

    Google Scholar 

  52. K.J. Daun, B.J. Stagg, F. Liu, G.J. Smallwood, D.R. Snelling, Determining aerosol particle size distributions using time-resolved laser-induced incandescence. Appl. Phys. B 87, 363–372 (2007)

    Article  ADS  Google Scholar 

  53. R.A. Dobbins, C.M. Megaridis, Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3, 254–259 (1987)

    Article  Google Scholar 

  54. A.D. Anna, A. Rolando, C. Allouis, P. Minutolo, A. D’Alessio, Nano-organic carbon and soot particle measurements in a laminar ethylene diffusion flame. Proc. Combust. Inst. 30, 1449–1456 (2005)

    Article  Google Scholar 

  55. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame. Appl. Phys. B 96, 657–669 (2009)

    Article  ADS  Google Scholar 

  56. J. Johnsson, H. Bladh, N.-E. Olofsson, P.-E. Bengtsson, Influence of soot aggregate structure on particle sizing using laser-induced incandescence: importance of bridging between primary particles. Appl. Phys. B (2013). doi:10.1007/s00340-013-5355-z

    Google Scholar 

  57. R. Stirn, T. Gonzalez Baquet, S.R. Kanjarkar, W. Meier, K.P. Geigle, H.-H. Grotheer, C. Wahl, M. Aigner, Comparison of particle size measurements with laser-induced incandescence, mass spectroscopy and scanning mobility particle sizing in a laminar premixed ethylene/air flame. Combust. Sci. Technol. 181, 329–349 (2009)

    Article  Google Scholar 

  58. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine. Combust. Flame 147, 79–92 (2006)

    Article  Google Scholar 

  59. H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N.-E. Olofsson, M. Sanati, J. Pagels, P.-E. Bengtsson, Influence of soot particle aggregation on time-resolved laser-induced incandescence signals. Appl. Phys. B 104, 331–341 (2011)

    Article  ADS  Google Scholar 

  60. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Appl. Phys. B 87, 503–521 (2007)

    Article  ADS  Google Scholar 

  61. J. Hult, A. Omrane, J. Nygren, C.F. Kaminski, B. Axelsson, R. Collin, P.-E. Bengtsson, M. Aldén, Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames. Exp. Fluids 33, 265–269 (2002)

    Article  Google Scholar 

  62. H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame. Proc. Combust. Inst. 33, 641–648 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of a Helmholtz/NRC collaborative partnership which made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Peter Geigle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadef, R., Geigle, K.P., Zerbs, J. et al. The concept of 2D gated imaging for particle sizing in a laminar diffusion flame. Appl. Phys. B 112, 395–408 (2013). https://doi.org/10.1007/s00340-013-5507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5507-1

Keywords

Navigation