Skip to main content
Log in

Determining aerosol particle size distributions using time-resolved laser-induced incandescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The particle size distribution within an aerosol containing refractory nanoparticles can be inferred using time-resolved laser-induced incandescence (TR-LII). In this procedure, a small volume of aerosol is heated to incandescent temperatures by a short laser pulse, and the incandescence of the aerosol particles is then measured as they return to the ambient gas temperature by conduction heat transfer. Although the cooling rate of an individual particle depends on its volume-to-area ratio, recovering the particle size distribution from the observed temporal decay of the LII signal is complicated by the fact that the LII signal is due to the incandescence of all particle size classes within the sample volume, and because of this, the particle size distribution is related to the time-resolved LII signal through a mathematically ill-posed equation.

This paper reviews techniques proposed in the literature for recovering particle size distributions from TR-LII data. The characteristics of this problem are then discussed in detail, with a focus on the effect of ill-posedness on the stability and uniqueness of the recovered particle size distributions. Finally, the performance of each method is evaluated and compared based on the results of a perturbation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Oberdörster, E. Oberdörster, J. Oberdörster, Environ. Health Persp. 113, 823 (2005)

    Article  Google Scholar 

  2. M.Z. Jacobson, J. Geophys. Res. 107, D19 (2002)

    ADS  Google Scholar 

  3. R. Viskanta, M.P. Menguç, Prog. Energ. Combust. Sci. 13, 97 (1987)

    Article  ADS  Google Scholar 

  4. S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, Chem. Eng. Technol. 26, 966 (2003)

    Article  Google Scholar 

  5. L.A. Melton, Appl. Opt. 23, 2202 (1984)

    ADS  Google Scholar 

  6. M. Kerker, The Scattering of Light (Academic Press, New York, 1969)

    Google Scholar 

  7. T.L. Farias, Ü.Ö. Köylu, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)

    Google Scholar 

  8. A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)

    Article  MATH  Google Scholar 

  9. A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interf. Sci. 229, 261 (2000)

    Article  Google Scholar 

  10. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2341 (1995)

    Article  ADS  Google Scholar 

  11. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)

    Article  ADS  Google Scholar 

  12. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Yale University Press, New Haven, CT, 1923)

    MATH  Google Scholar 

  13. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  14. S. Twomey, J. Comput. Phys. 18, 188 (1975)

    Article  ADS  Google Scholar 

  15. G.R. Markowski, Aerosol Sci. Technol. 7, 127 (1987)

    Google Scholar 

  16. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  17. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    ADS  Google Scholar 

  18. S.A. Kuhlmann, J. Schumacher, J. Reimann, S. Will, Proc. PARTEC, Nuremburg, Germany, March 16–18, 2004

  19. S. Dankers, A. Leipertz, Appl. Opt. 43, 3726 (2004)

    Article  ADS  Google Scholar 

  20. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777 (2006)

    Article  Google Scholar 

  21. T. Dreier, B. Bougie, N. Dam, T. Gerber, Appl. Phys. B 83, 403 (2006)

    Article  ADS  Google Scholar 

  22. B.F. Kock, P. Roth, Proc. European Combustion Meeting, Orléans, October 2003

  23. B. Tribalet, B.F. Kock, P. Ifeacho, P. Roth, C. Schulz, Proc. 2nd Int. Meeting and Workshop on Laser-Induced Incandescence, Bad Herrenalb, August 2006

  24. P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic Press, San Diego, CA, 1986)

    Google Scholar 

  25. J.J. More, D.C. Sorensen, SIAM J. Sci. Stat. Comput. 4, 553 (1983)

    Google Scholar 

  26. B.J. Stagg, Proc. 2nd Int. Meeting and Workshop on Laser-Induced Incandescence, Bad Herrenalb, August 2006

  27. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  28. F. Liu, D.R. Snelling, G.J. Smallwood, Proc. 13th IHTC, Sydney, Australia, August 2006

  29. F. Liu, K.J. Daun, G.J. Smallwood, 2nd Int. Meeting and Workshop on Laser-Induced Incandescence, Bad Herrenalb, Germany, August 2006

  30. H.A. Michelsen, J. Chem. Phys. 118, 15 (2003)

    Article  Google Scholar 

  31. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123 (2001)

  32. R.B. D’Agostino, M.A. Stephens, Goodness-of-fit Techniques (Dekker, New York, 1986)

    MATH  Google Scholar 

  33. A. Yariv, Introduction to Optical Electronics (Holt, Reinhold and Winston, Inc., New York, 1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.J. Daun.

Additional information

PACS

44.05.+e; 47.70.Pq; 78.70.-g; 65.80.+n; 78.20.Ci

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daun, K., Stagg, B., Liu, F. et al. Determining aerosol particle size distributions using time-resolved laser-induced incandescence. Appl. Phys. B 87, 363–372 (2007). https://doi.org/10.1007/s00340-007-2585-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2585-y

Keywords

Navigation