Skip to main content
Log in

Tunable diode laser absorption sensor for the simultaneous measurement of water film thickness, liquid- and vapor-phase temperature

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A four-wavelength near-infrared (NIR) tunable diode laser sensor has been developed for the simultaneous measurement of liquid water film thickness, liquid-phase temperature and vapor-phase temperature above the film. This work is an important improvement of a three-wavelength concept previously introduced by Yang et al. (Appl. Phys. B 99:385, 2010), which measured the film thickness in environments with known temperature only. In the new sensor, an optimized combination of four wavelengths is chosen based on a sensitivity analysis with regard to the temperature dependence of the liquid water absorption cross section around 1.4 μm. The temperature of liquid water and the film thickness are calculated from absorbance ratios taken at three wavelength positions assessing the broad-band spectral signature of liquid water. The vapor-phase temperature is determined from the absorbance ratio of two lasers rapidly tuned across two narrow-band gas-phase water absorption transitions. The performance of the sensor was demonstrated in a calibration cell providing liquid layers of variable thickness and temperature with uncertainties smaller than 5% for thickness measurements and 1.5% for liquid-phase temperatures, respectively. Experiments are also presented for time-resolved thickness and temperature measurements of evaporating water films on a quartz plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yang, D. Greszik, T. Dreier, C. Schulz, Appl. Phys. B 99, 385 (2010)

    Article  ADS  Google Scholar 

  2. P.G. Felton, D.C. Kyritsis, S.K. Fulcher, SAE Technical Paper 952464 (1995)

  3. M.C. Drake, T.D. Fansler, A.S. Solomon, J.G.A. Szekely, SAE Technical Paper 2003 (2003)

  4. W. Hentschel, A. Grote, O. Lange, SAE Technical Paper 972832 (1997)

  5. A. Schagen, M. Modigell, Exp. Fluids 43, 209 (2007)

    Article  Google Scholar 

  6. J.R. Mawhinney, J.K. Richardson, Fire Technol. 33, 54 (1996)

    Article  Google Scholar 

  7. T.A. Shedd, T.A. Newell, Rev. Sci. Instrum. 69, 4205 (1998)

    Article  ADS  Google Scholar 

  8. E.T. Hurlburt, T.A. Newell, Exp. Fluids 21, 357 (1996)

    Article  Google Scholar 

  9. E. Kull, G. Wiltafsky, W. Stolz, Opt. Lett. 22, 645 (1997)

    Article  ADS  Google Scholar 

  10. M. Alonso, P.J. Kay, P.J. Bowen, R. Gilchrist, S. Sapsford, Exp. Fluids 48, 132 (2010)

    Article  Google Scholar 

  11. A.A. Mouza, N.A. Vlachos, S.V. Paras, A.J. Karabelas, Exp. Fluids 28, 355 (2000)

    Article  Google Scholar 

  12. S. Wittig, J. Himmelsbach, B. Noll, H.J. Feld, W. Samenfink, J. Eng. Gas Turbine Power 114, 395 (1992)

    Article  Google Scholar 

  13. J.M. Porter, J.B. Jeffries, R.K. Hanson, Appl. Phys. B (2010). doi:10.1007/s00340

    Google Scholar 

  14. J.M. Porter, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 110, 2135 (2009)

    Article  ADS  Google Scholar 

  15. D. Greszik, H. Yang, T. Dreier, C. Schulz, Appl. Phys. B 102, 123 (2010)

    Article  ADS  Google Scholar 

  16. D.W. Alderfer, G.C. Herring, P.M. Danehy, T. Mizukaki, K. Takayama, Appl. Opt. 44, 2818 (2005)

    Article  ADS  Google Scholar 

  17. X. Liu, J.B. Jeffries, R.K. Hanson, K.M. Hinckley, M.A. Woodmansee, Appl. Phys. B 82, 469 (2006)

    Article  ADS  Google Scholar 

  18. A.D. Griffiths, A.F.P. Houwing, Appl. Opt. 44, 6653 (2005)

    Article  ADS  Google Scholar 

  19. K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, V. Ebert, Appl. Opt. 48, 172 (2009)

    Article  ADS  Google Scholar 

  20. X. Chao, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 20, 1 (2009)

    Article  Google Scholar 

  21. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161 (2009)

    Article  ADS  Google Scholar 

  22. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  23. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 14, 1459 (2003)

    Article  ADS  Google Scholar 

  24. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 16, 2437 (2005)

    Article  ADS  Google Scholar 

  25. D.W. Mattison, J.B. Jeffries, R.K. Hanson, R.R. Steeper, S. DeZilwa, J.E. Dec, M. Sjoberg, W. Hwang, Proc. Combust. Inst. 31, 791 (2007)

    Article  Google Scholar 

  26. L. Kou, D. Labrie, P. Chylek, Appl. Opt. 32, 3531 (1993)

    Article  ADS  Google Scholar 

  27. G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)

    Article  ADS  Google Scholar 

  28. J.R. Collins, Phys. Rev. 26, 771 (1925)

    Article  ADS  Google Scholar 

  29. D.R. Lide, H.V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data (1994)

  30. The Engineering Toolbox, http://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html (2010)

  31. X. Liu, J.B. Jeffries, R.K. Hanson, AIAA J. 45, 411 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Greszik, D., Wlokas, I. et al. Tunable diode laser absorption sensor for the simultaneous measurement of water film thickness, liquid- and vapor-phase temperature. Appl. Phys. B 104, 21–27 (2011). https://doi.org/10.1007/s00340-011-4643-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4643-8

Keywords

Navigation