Skip to main content
Log in

Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Tunable diode-laser absorption of CO2 near 2.7 μm incorporating wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) is used to provide a new sensor for sensitive and accurate measurement of the temperature behind reflected shock waves in a shock-tube. The temperature is inferred from the ratio of 2f signals for two selected absorption transitions, at 3633.08 and 3645.56 cm−1, belonging to the ν 1+ν 3 combination vibrational band of CO2 near 2.7 μm. The modulation depths of 0.078 and 0.063 cm−1 are optimized for the target conditions of the shock-heated gases (P∼1–2 atm, T∼800–1600 K). The sensor is designed to achieve a high sensitivity to the temperature and a low sensitivity to cold boundary-layer effects and any changes in gas pressure or composition. The fixed-wavelength WMS-2f sensor is tested for temperature and CO2 concentration measurements in a heated static cell (600–1200 K) and in non-reactive shock-tube experiments (900–1700 K) using CO2–Ar mixtures. The relatively large CO2 absorption strength near 2.7 μm and the use of a WMS-2f strategy minimizes noise and enables measurements with lower concentration, higher accuracy, better sensitivity and improved signal-to-noise ratio (SNR) relative to earlier work, using transitions in the 1.5 and 2.0 μm CO2 combination bands. The standard deviation of the measured temperature histories behind reflected shock waves is less than 0.5%. The temperature sensor is also demonstrated in reactive shock-tube experiments of n-heptane oxidation. Seeding of relatively inert CO2 in the initial fuel-oxidizer mixture is utilized to enable measurements of the pre-ignition temperature profiles. To our knowledge, this work represents the first application of wavelength modulation spectroscopy to this new class of diode lasers near 2.7 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Glassman, Combustion (Academic Press, San Diego, 1996)

    Google Scholar 

  2. R.K. Hanson, D.F. Davidson, in Handbook of Shock Waves, ed. by G. Ben-Dor, O. Igra, T. Elperin, vol. 1 (Academic Press, San Diego, 2001), Chap. 5.2

    Google Scholar 

  3. J.A. Silver, D.J. Kane, P.S. Greenberg, Appl. Opt. 34, 2787 (1995)

    Article  ADS  Google Scholar 

  4. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  5. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  6. R.K. Hanson, J.B. Jeffries, in 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Washington, DC (2006), AIAA-2006–3441

  7. D. Richter, D.G. Lancaster, F.K. Tittle, Appl. Opt. 39, 4444 (2000)

    Article  ADS  Google Scholar 

  8. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 587 (2000)

    Article  Google Scholar 

  9. D.T. Cassidy, J. Reid, Appl. Opt. 21, 1185 (1982)

    Article  ADS  Google Scholar 

  10. L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993)

    Article  ADS  Google Scholar 

  11. J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)

    Article  ADS  Google Scholar 

  12. J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579 (2000)

    Article  ADS  Google Scholar 

  13. J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 78, 503 (2004)

    Article  ADS  Google Scholar 

  14. P. Kluczynski, O. Axner, Appl. Opt. 38, 5803 (1999)

    Article  ADS  Google Scholar 

  15. J.A. Silver, D.J. Kane, Meas. Sci. Technol. 10, 845 (1999)

    Article  ADS  Google Scholar 

  16. J.A. Silver, Appl. Opt. 31, 707 (1992)

    Article  ADS  Google Scholar 

  17. T. Aizawa, Appl. Opt. 40, 4894 (2001)

    Article  ADS  Google Scholar 

  18. T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)

    Article  ADS  Google Scholar 

  19. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)

    Article  ADS  Google Scholar 

  20. T. Iseki, H. Tai, K. Kimura, Meas. Sci. Technol. 11, 594 (2000)

    Article  ADS  Google Scholar 

  21. R.T. Wainner, B.D. Green, M.G. Allen, M.A. White, J. Stafford-Evans, R. Naper, Appl. Phys. B 75, 249 (2002)

    Article  ADS  Google Scholar 

  22. G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Proc. Combust. Inst. 31, 3041 (2007)

    Article  Google Scholar 

  23. H. Li, A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 89, 407 (2007)

    Article  ADS  Google Scholar 

  24. Nanosystem and Technologies GmbH, http://www.nanoplus.com

  25. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90, 619 (2008)

    Article  ADS  Google Scholar 

  26. A. Farooq, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 19 (2008)

  27. K. Wunderle, S. Wagner, V. Ebert, in Laser Applications to Chemical, Security and Environmental Analysis, St. Petersburg, FL (2008), LACSEA-LMB1

  28. D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson, M.E. Newfield, AIAA J. 34, 489 (1996)

    Article  ADS  Google Scholar 

  29. V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson, Appl. Opt. 35, 4026 (1996)

    Article  ADS  Google Scholar 

  30. J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 43, 6500 (2004)

    Article  ADS  Google Scholar 

  31. L.S. Rothman, D. Jacquemart, The 2004 edition of the HITRAN compilation, in 8th HIITRAN Database Conf., Boston: Harvard-Smithsonian Center for Astrophysics, 2004

  32. HITRAN website, http://cfa-www.harvard.edu/HITRAN/

  33. J.T. Herbon, R.K. Hanson, D.M. Golden, C.T. Bowman, Proc. Combust. Inst. 29, 1201 (2002)

    Article  Google Scholar 

  34. M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 108, 4247 (2004)

    Article  Google Scholar 

  35. Z. Hong, G.A. Pang, S.S. Vasu, D.F. Davidson, R.K. Hanson, The use of driver inserts to eliminate facility effects behind reflected shock waves. In preparation

  36. Z. Hong, G.A. Pang, S.S. Vasu, D.F. Davidson, R.K. Hanson, Analysis of contact surface tailoring conditions in shock-tubes. In preparation

  37. G. Emanuel, in Handbook of Shock Waves, vol. 1, ed. by G. Ben-Dor, O. Igra, T. Elperin (Academic Press, San Diego, 2001), Chap. 3.1

    Chapter  Google Scholar 

  38. H. Mirels, in Shock-Tube Research, Proceedings of the Eighth International Shock-Tube Symposium, ed. by J.L. Stollery, A.G. Gaydon, P.R. Owen (Chapman & Hall, London, 1972), pp. 6/2–30

    Google Scholar 

  39. K.J. Badcock, Int. J. Numer. Methods Fluids 14, 1151 (1992)

    Article  MATH  ADS  Google Scholar 

  40. E.L. Petersen, R.K. Hanson, AIAA J. 41, 1314 (2003)

    Article  ADS  Google Scholar 

  41. B. Sirjean et al., A high-temperature chemical kinetic model of n-alkane oxidation, JetSurf version 0.2 (http://melchior.usc.edu/JetSurF/Version0_2/Index.html) (2008)

  42. H. Li, Z.C. Owens, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 40, 189 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farooq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooq, A., Jeffries, J.B. & Hanson, R.K. Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B 96, 161–173 (2009). https://doi.org/10.1007/s00340-009-3446-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3446-7

PACS

Navigation