Skip to main content
Log in

Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea–water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500–8000 cm−1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200–1500 µm), urea mass fraction (5–40 wt%) and temperature (298–318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Nova, E. Tronconi (eds.), Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts (Springer, New York, 2014)

    Google Scholar 

  2. F. Birkhold, U. Meingast, P. Wassermann, O. Deutschmann, Appl. Catal. B: Environ. 70, 119 (2005)

    Article  Google Scholar 

  3. F. Birkhold, U. Meingast, P. Wassermann, O. Deutschmann, SAE Technical Paper 2006-01-0643 (2006)

  4. I.B. Özdemir, J.H. Whitelaw, Exp. Fluids 13, 321 (1992)

    Article  Google Scholar 

  5. T.A. Shedd, T.A. Newell, Rev. Sci. Instr. 69, 4205 (1998)

    Article  ADS  Google Scholar 

  6. P. Kelly-Zion, W. Collins, D. Glawe, ASME Heat Transfer/Fluids Engineering Summer Conference, HT-FED04-56693, ASME, New York (2004)

  7. A.A. Mouza, N.A. Vlachos, S.V. Paras, A.J. Karabelas, Exp. Fluids 28, 355 (2000)

    Article  Google Scholar 

  8. J.M. Porter, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 102, 345 (2011)

    Article  ADS  Google Scholar 

  9. S. Wittig, J. Himmelsbach, B. Noll, H.J. Feld, W. Samenfink, J. Eng. Gas Turbines Power 114, 395 (1992)

    Article  Google Scholar 

  10. H. Yang, D. Greszik, I. Wlokas, T. Dreier, C. Schulz, Appl. Phys. B 104, 21 (2011)

    Article  ADS  Google Scholar 

  11. H. Yang, X. Guo, W. Zhou, B. Chen, J. Hu, M. Su, X. Cai, Exp. Fluids 56, 73 (2015)

    Article  Google Scholar 

  12. W. French, D. Rose, P. Kelly-Zion, C. Pursell, SAE Technical Paper 2008-01-2443 (2008)

  13. M. Alonso, P.J. Kay, P.J. Bowen, R. Gilchrist, S. Sapsford, Exp. Fluids 48, 132 (2010)

    Article  Google Scholar 

  14. D. Greszik, H. Yang, T. Dreier, C. Schulz, Appl. Phys. B 102, 123 (2011)

    Article  ADS  Google Scholar 

  15. E. Kull, G. Wiltafsky, W. Stolz, K.D. Min, E. Holder, Opt. Lett. 22, 645 (1997)

    Article  ADS  Google Scholar 

  16. S. Grout, J.B. Blaisot, K. Pajot, G. Osbat, Fuel 106, 166 (2013)

    Article  Google Scholar 

  17. R. Pan, J.B. Jeffries, T. Dreier, C. Schulz, Appl. Phys. B 120, 397 (2015)

    Article  ADS  Google Scholar 

  18. R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011)

    Article  Google Scholar 

  19. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 587 (2000)

    Article  Google Scholar 

  20. E.A. Galinski, Experientia 49, 487 (1993)

    Article  Google Scholar 

  21. E.A. Galinski, M. Stein, B. Amendt, M. Kinder, Comp. Biochem. Physiol. Part A: Physiol 117, 357 (1997)

    Article  Google Scholar 

  22. R.F. Hankel, A. Günther, K.E. Wirth, A. Leipertz, A. Braeuer, Opt. Expr. 22, 7962 (2014)

    Article  ADS  Google Scholar 

  23. A. Henriques, J. Martins, J. Ferra, F.D. Magalhaes, L. Carvalho, 16th International Conference on Near Infrared Spectroscopy, France (2013)

  24. J.J. Workman, L. Weyer (eds.), Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, London, 2007)

    Google Scholar 

  25. F.T. Gucker, F.W. Gage, C.E. Moser, J. Am. Chem. Soc. 60, 2582 (1938)

    Article  Google Scholar 

  26. K. Kawahra, C. Tanford, J. Biol. Chem. 241, 3228 (1966)

    Google Scholar 

  27. M.A. Motin, T.K. Biswas, E.M. Huque, Phys. Chem. Liq. 40, 593 (2002)

    Article  Google Scholar 

  28. C. Dale Keefe, T. Wilcox, E. Campbell, J. Mol. Struct. 1009, 111 (2012)

    Article  ADS  Google Scholar 

  29. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, London, 1959)

    MATH  Google Scholar 

  30. I. Thormählen, J. Straub, U. Grigull, J. Phys. Chem. Ref. Data 14, 933 (1985)

    Article  ADS  Google Scholar 

  31. J.R. Warren, J.A. Gordon, J. Phys. Chem. 70, 297 (1966)

    Article  Google Scholar 

  32. O. Söhnel, P. Novotny, Densities of Aqueous Solutions of Inorganic Substances (Elsevier, Amsterdam, 1985)

    Google Scholar 

  33. A.V. Wolf, Aqueous Solutions and Body Fluids (Harper & Row, New York, 1966)

    Google Scholar 

  34. J. Gordadolnik, Y. Marechal, J. Mol. Struct. 615, 177 (2002)

    Article  ADS  Google Scholar 

  35. M. Lever, K. Randall, E.A. Galinski, Biochim. Biophys. Acta 1528, 135 (2001)

    Article  Google Scholar 

  36. M.C. Stumpe, H. Grubmüller, J. Phys. Chem. B 111, 6220 (2007)

    Article  Google Scholar 

  37. H. Maeda, Y. Ozaki, M. Tanaka, N. Hayashi, T. Kojima, J. Near Infrared Spectrosc. 3, 191 (1995)

    Article  ADS  Google Scholar 

  38. H. Yang, D. Greszik, T. Dreier, C. Schulz, Appl. Phys. B 99, 385 (2010)

    Article  ADS  Google Scholar 

  39. R. Goldstein, S.S. Penner, J. Quant. Spectrosc. Radiat. Transfer 4, 441 (1963)

    Article  Google Scholar 

  40. F. Fadul, A. Nelli, A. Fakheri, ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE2007-43393, ASME, New York (2007)

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) under Grant SCHU 1369/16-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Jeffries, J.B., Dreier, T. et al. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy. Appl. Phys. B 122, 4 (2016). https://doi.org/10.1007/s00340-015-6290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6290-y

Keywords

Navigation