Skip to main content
Log in

Measurements of liquid film thickness, concentration and temperature of aqueous NaCl solution by NIR absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A multi-wavelength diode laser absorption sensor was investigated for real-time monitoring of the thickness, solute concentration and temperature of thin films of liquid solutions, and the concept was demonstrated with aqueous NaCl solutions. The sensor monitors the transmittance of laser intensity of four near-infrared diode lasers through a thin liquid film deposited on a quartz plate. The variation of the absorption spectrum of the solution with temperature and solute concentration was used to select wavelengths for determining film thickness, NaCl concentration and liquid temperature from ratios of the transmission measurements. The spectral database needed to select laser wavelengths was measured by a Fourier transform infrared spectrometer in the near infrared (5500–8000 cm−1) for NaCl solutions between 5 and 26 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was validated with measurements using a calibration cell consisting of two parallel quartz plates providing liquid layers of variable thickness (200–1500 μm), NaCl concentration (5–15 wt%) and temperature (293–318 K). The sensor was demonstrated for real-time constant temperature evaporation of an evaporating liquid film deposited on a heated quartz window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.B. Özdemir, J.H. Whitelaw, Exp. Fluids 13, 321 (1992)

    Article  Google Scholar 

  2. T.A. Shedd, T.A. Newell, Rev. Sci. Instrum. 69, 4205 (1998)

    Article  ADS  Google Scholar 

  3. A.A. Mouza, N.A. Vlachos, S.V. Paras, A.J. Karabelas, Exp. Fluids 28, 355 (2000)

    Article  Google Scholar 

  4. J.M. Porter, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 102, 345 (2011)

    Article  ADS  Google Scholar 

  5. S. Wittig, J. Himmelsbach, B. Noll, H.J. Feld, W. Samenfink, J. Eng. Gas Turbines Power 114, 395 (1992)

    Article  Google Scholar 

  6. H. Yang, D. Greszik, T. Dreier, C. Schulz, Appl. Phys. B 99, 385 (2010)

    Article  ADS  Google Scholar 

  7. M. Alonso, P.J. Kay, P.J. Bowen, R. Gilchrist, S. Sapsford, Exp. Fluids 48, 132 (2010)

    Article  Google Scholar 

  8. E. Kull, G. Wiltafsky, W. Stolz, K.D. Min, E. Holder, Opt. Lett. 22, 645 (1997)

    Article  ADS  Google Scholar 

  9. D. Greszik, H. Yang, T. Dreier, C. Schulz, Appl. Phys. B 102, 123 (2011)

    Article  ADS  Google Scholar 

  10. H. Yang, D. Greszik, I. Wlokas, T. Dreier, C. Schulz, Appl. Phys. B 104, 21 (2011)

    Article  ADS  Google Scholar 

  11. A. Schagen, M. Modigell, Exp. Fluids 43, 209 (2007)

    Article  Google Scholar 

  12. A.I. Petruchik, S.P. Fisenko, J. Eng. Phys. Thermophys. 72, 43 (1999)

    Article  Google Scholar 

  13. H. Glade, K. Krömer, S. Will, S. Nied, S.M. Pancera, G. Schürmann, IDA J. Desalin. Water Reuse 2, 38 (2010)

    Article  Google Scholar 

  14. J. Gieshoff, M. Pfeifer, A. Schafer-Sindlinger, P.C. Spurk, G. Garr, T. Leprince, M. Crocker, SAE Technical Paper, 2001010514 (2001)

  15. L.R. Ma, C.H. Zhang, J.B. Luo, Soft Matter 7, 4207 (2011)

    Article  ADS  Google Scholar 

  16. R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011)

    Article  Google Scholar 

  17. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 587 (2000)

    Article  Google Scholar 

  18. J.V. Frost, K. Molt, J. Mol. Struct. 410–411, 573 (1997)

    Google Scholar 

  19. J.R. Collins, Phys. Rev. 26, 771 (1925)

    Article  ADS  Google Scholar 

  20. H. Maeda, Y. Ozaki, M. Tanaka, N. Hayashi, T. Kojima, J. Near Infrared Spectrosc. 3, 191 (1995)

    Article  ADS  Google Scholar 

  21. A.A. Gowen, J.M. Amigo, R. Tsenkova, Anal. Chim. Acta 759, 8 (2013)

    Article  Google Scholar 

  22. J. Lin, C.W. Brown, Appl. Spectrosc. 46, 1809 (1992)

    Article  ADS  Google Scholar 

  23. J. Lin, C.W. Brown, J. Near Infrared Spectrosc. 1, 109 (1993)

    Article  ADS  Google Scholar 

  24. J. Lin, C.W. Brown, Trends Anal. Chem. 13, 320 (1994)

    Article  Google Scholar 

  25. G.R. Choppin, K. Buijs, J. Chem. Phys. 39, 2042 (1963)

    Article  ADS  Google Scholar 

  26. R.W. Style, J.S. Wettlaufer, Phys. Rev. E 76, 11602 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) under Grant SCHU 1369/16-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Jeffries, J.B., Dreier, T. et al. Measurements of liquid film thickness, concentration and temperature of aqueous NaCl solution by NIR absorption spectroscopy. Appl. Phys. B 120, 397–406 (2015). https://doi.org/10.1007/s00340-015-6149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6149-2

Keywords

Navigation