Skip to main content
Log in

Enhanced room temperature ferromagnetism in YMnO3-modified lead-free ferroelectric Bi0.5Na0.5TiO3 materials

  • Rapid Communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The strongly enhanced room temperature ferromagnetism in Bi0.5Na0.5TiO3 materials was obtained via modification of YMnO3 as solid solutions. The weak ferromagnetism in pure Bi0.5Na0.5TiO3 was changed to ferromagnetism and antiferromagnetic-like with increasing the concentration of YMnO3 addition. The maxima magnetic moment was estimated at around 28.4 memu/g for 9 mol.% YMnO3-modified Bi0.5Na0.5TiO3 as a solid solution. The reduction of the optical bandgap energy from 3.18 eV to 2.01 eV was obtained via increasing YMnO3 addition into host Bi0.5Na0.5TiO3 crystal as solid solutions with amounts up to 9 mol.%. We suggested that the observation in the reduction of optical bandgap energy and great enhancement of the magnetic moment in YMnO3-modified Bi0.5Na0.5TiO3 compounds were strongly related to the random distribution of Y and Mn cations into the host lattice of Bi0.5Na0.5TiO3 crystals. We expected that our work will provide a simple way to integrate room temperature ferromagnetism into currently developed green ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Zhang, B. Malic, J.F. Li, J. Rodel, Lead-free ferroelectric materials: prospective applications. J. Mater. Res. 36, 985–995 (2021). https://doi.org/10.1557/s43578-021-00180-y

    Article  ADS  Google Scholar 

  2. N.D. Quan, L.H. Bac, D.V. Thiet, V.N. Hung, D.D. Dung, Current development in lead-free Bi0.5(Na, K)0.5TiO3-based piezoelectric materials. Adv. Mater. Sci. Eng. 2014, 365391 (2014). https://doi.org/10.1155/2014/365391

    Article  Google Scholar 

  3. S. Supriya, A review on lead-free-Bi0.5Na0.5TiO3 based ceramics and films: dielectric, piezoelectric, ferroelectric and energy storage performance. J. Inorg. Organomet. Polym. Mater. 32, 3659–3676 (2022). https://doi.org/10.1007/s10904-022-02418-6

    Article  Google Scholar 

  4. C. Zhou, X. Liu, W. Li, C. Yuan, Dielectric and piezoelectric properties of YMnO3 modified Bi0.5Na0.5TiO3 lead-free piezoelectric ceramics. J. Mater. Sci.: Mater Electron. 21, 364–367 (2010). https://doi.org/10.1007/s10854-009-9922-3

    Article  Google Scholar 

  5. X. Xu, J. Jiang, H. Ahmad, G. Yuan, J. Yin, Z. Liu, Improved ferroelectricity of (1–x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics rapidly sintered at low temperature. Ceram. Int. 40, 11819–11824 (2014). https://doi.org/10.1016/j.ceramint.2014.04.014

    Article  Google Scholar 

  6. F.G. Agayev, S.V. Trukhanov, A.V. Trukhanov, S.H. Jabarov, G.S. Ayyubova, M.N. Mirzayev, E.L. Trukhanova, D.A. Vinnik, A.L. Kozlovskiy, M.V. Zdovovets, A.S.B. Sombar, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Study of structural features and thermal properties of barium hexaferrite upon indium doping. J. Therm. Anal. Calor. 147, 14107–14114 (2022). https://doi.org/10.1007/s10973-022-11742-5

    Article  Google Scholar 

  7. M.V. Zdorovets, A.L. Kozkovskiy, D.I. Shlimas, D.B. Borgekov, Phase tranformations in FeCo-Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci.: Mater Electron. 32, 16694–16705 (2021). https://doi.org/10.1007/s10854-021-06226-5

    Article  Google Scholar 

  8. L. Ju, C. Shi, L. Sun, Y. Zhang, H. Qiu, J. Hu, Room-temperature magnetoelectric coupling in nanocrystalline Na0.5Bi0.5TiO3. J. Appl. Phys. 116, 083909 (2014). https://doi.org/10.1063/1.4893720

    Article  ADS  Google Scholar 

  9. G.A. Prinz, Magnetoelectronics applications. J. Magn. Magn. Mater. 200, 57–68 (1999). https://doi.org/10.1016/S0304-8853(99)00335-2

    Article  ADS  Google Scholar 

  10. S. Kopyl, R. Surmenev, M. Surmeneva, Y. Fetisov, A. Kholkin, Magnetoelectric effect: principles and applications in biology and medicine-a review. Mater. Today Bio. 12, 100149 (2021). https://doi.org/10.1016/j.mtbio.2021.100149

    Article  Google Scholar 

  11. N.A. Spaldin, Multiferroics beyond electric-field control of magnetism. Proc. R. Soc. A 476, 20190542 (2020). https://doi.org/10.1098/rspa.2019.0542

    Article  ADS  Google Scholar 

  12. Y. Zhang, J. Hu, F. Gao, H. Liu, H. Qin, Ab initio calculation for vacancy-induced magnetism in ferroelectric Na0.5Bi0.5TiO3. Comput. Theor. Chem. 967, 284–288 (2011). https://doi.org/10.1016/j.comptc.2011.04.030

    Article  Google Scholar 

  13. V.T. Lam, N.H. Thoan, N.N. Trung, D.Q. Van, D.D. Dung, Surface ferromagnetism of complex defects lead-free ferroelectric Bi0.5Na0.5TiO3 materials. Sur. Inter. An. 55, 243–255 (2023). https://doi.org/10.1002/sia.7184

    Article  Google Scholar 

  14. D.D. Dung, N.T. Hung, D. Odkhuu, Structure, optical and magnetic properties of new Bi0.5Na0.5TiO3-SrMnO3-δ solid solution materials. Sci. Rep. 9, 18186 (2019). https://doi.org/10.1038/s41598-019-54172-4

    Article  ADS  Google Scholar 

  15. L.T.H. Thanh, N.B. Doan, N.Q. Dung, L.V. Cuong, L.H. Bac, N.A. Duc, P.Q. Bao, D.D. Dung, Origin of room temperature ferromagnetism in Cr-doped lead-free ferroelectric Bi0.5Na0.5TiO3 materials. J. Electron. Mater. 46, 3367–3372 (2017). https://doi.org/10.1007/s11664-016-5248-0

    Article  ADS  Google Scholar 

  16. D.D. Dung, N.B. Doan, N.Q. Dung, N.H. Linh, L.H. Bac, L.T.H. Thanh, N.N. Trung, N.V. Duc, L.V. Cuong, D.V. Thiet, S. Cho, Tunable magnetism of Na0.5Bi0.5TiO3 materials via Fe defects. J. Supercond. Novel Magn. 32, 3011–3018 (2019). https://doi.org/10.1007/s10948-019-05163-z

    Article  Google Scholar 

  17. D.D. Dung, N.B. Doan, N.Q. Dung, L.H. Bac, N.H. Linh, L.T.H. Thanh, D.V. Thiet, N.N. Trung, N.C. Khang, T.V. Trung, N.V. Duc, Role of Co dopants on the structural, optical and magnetic properties of lead-free ferroelectric Na0.5Bi0.5TiO3 materials. J. Sci Adv. Mater. Dev. 4, 584–590 (2019). https://doi.org/10.1016/j.jsamd.2019.08.007

    Article  Google Scholar 

  18. D.D. Dung, N.Q. Dung, N.B. Doan, N.H. Linh, L.H. Bac, N.N. Trung, N.V. Duc, L.T.H. Thanh, L.V. Cuong, D.V. Thiet, S. Cho, Defect-mediated room temperature ferromagnetism in lead-free ferroelectric Na0.5Bi0.5TiO3 materials. J. Supercond. Novel Magn. 33, 911–920 (2020). https://doi.org/10.1007/s10948-019-05399-9

    Article  Google Scholar 

  19. L.T.H. Thanh, N.B. Doan, L.H. Bac, D.V. Thiet, S. Cho, P.Q. Bao, D.D. Dung, Making room-temperature ferromagnetism in lead-free ferroelectric Bi0.5Na0.5TiO3 material. Mater. Lett. 186, 239–242 (2017). https://doi.org/10.1016/j.matlet.2016.09.105

    Article  Google Scholar 

  20. Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, Room-temperature ferromagnetism in Fe-doped Na0.5Bi0.5TiO3 crystals. Mater. Sci Poland 27, 471–476 (2009)

    Google Scholar 

  21. Y. Wang, G. Xu, X. Ji, Z. Ren, W. Weng, P. Du, Room-temperature ferromagnetism of Co-doped Na0.5Bi0.5TiO3: Diluted magnetic ferroelectrics. J. Alloy Compd. 475, L25–L30 (2009). https://doi.org/10.1016/j.jallcom.2008.07.073

    Article  Google Scholar 

  22. M.M. Hue, N.Q. Dung, L.T.K. Phuong, N.N. Trung, N.V. Duc, L.H. Bac, D.D. Dung, Magnetic properties of (1–x)Bi0.5Na0.5TiO3+xMnTiO3 materials. J. Magn. Magn. Mater. 471, 164–168 (2019). https://doi.org/10.1016/j.jmmm.2018.09.087

    Article  ADS  Google Scholar 

  23. D.D. Dung, N.Q. Dung, M.M. Hue, N.H. Lam, L.H. Bac, L.T.K. Phuong, N.N. Trung, D.D. Tuan, N.D. Quan, D. Sangaa, D. Odkhuu, Experimental and theoretical studies on the room-temperature ferromagnetism in new (1–x)Bi1/2Na1/2TiO3+xCoTiO3 solid solution materials. Vacuum 179, 109551 (2020). https://doi.org/10.1016/j.vacuum.2020.109551

    Article  ADS  Google Scholar 

  24. D.D. Dung, N.H. Lam, A.D. Nguyen, N.N. Trung, N.V. Duc, N.T. Hung, Y.S. Kim, D. Odkhuu, Experimental and theoretical studies on induced ferromagnetism of new (1–x)Na0.5Bi0.5TiO3 + xBaFeO3−δ solid solution. Sci. Rep. 11, 8908 (2021). https://doi.org/10.1038/s41598-021-88377-3

    Article  ADS  Google Scholar 

  25. L.T.K. Phuong, D.D. Dung, N.Q. Dung, M.M. Hue, N.X. Duong, P.D. Luong, L.H. Bac, N.A. Duc, N.N. Trung, N.V. Duc, D. Odkhuu, Structural, optical, and magnetic properties of a new system of Bi(Mn0.5Ti0.5)O3-modified Bi0.5Na0.5TiO3 materials. Mater. Res. Express 6(106112), 106122 (2019). https://doi.org/10.1088/2053-1591/ab3ce0

    Article  ADS  Google Scholar 

  26. D. D. Dung, N. H. Thoan, V. T. Lam, N. H. Lam, M. M. Hue, N. N. Trung, and D. Q. Van.: Structural, magnetic, and optical properties of complex lead-free ferroelectric 0.97Bi0.5Na0.5TiO3 + 0.03AMnO3 (A = Mg, Ca, Sr, Ba) materials, Lecture Notes in Mechanical Engineering (2022). pp. 599–603. https://doi.org/10.1007/978-3-030-99666-6_86.

  27. D.D. Dung, N.T. Hung, D. Odkhuu, Magnetic and optical properties of new (1–x)Bi0.5Na0.5TiO3+xCaMnO3-δ solid solution materials. Mater. Sci. Eng. B 263, 114902 (2021). https://doi.org/10.1016/j.mseb.2020.114902

    Article  Google Scholar 

  28. D.D. Dung, N.T. Hung, D. Odkhuu, Magnetic and optical properties of new (1–x)Bi0.5Na0.5TiO3+xBaMnO3-δ solid solution materials. Appl. Phys. A 125, 465 (2019). https://doi.org/10.1007/s00339-019-2571-3

    Article  ADS  Google Scholar 

  29. D.D. Dung, N.T. Hung, D. Odkhuu, Magnetic and optical properties of MgMnO3-δ-modified Bi0.5Na0.5TiO3 materials. J. Magn. Magn. Mater. 482, 31–37 (2019). https://doi.org/10.1016/j.jmmm.2019.03.029

    Article  ADS  Google Scholar 

  30. D.D. Dung, N.H. Thoan, N.Q. Dung, N.H. Lam, P.V. Vinh, V.T. Lam, P.D. Luong, D.Q. Van, Structural, optical, and magnetic properties of a new complex (1–x)Bi1/2Na1/2TiO3+xMgNiO3-δ solid solution system. Appl. Phys. A 128, 129 (2022). https://doi.org/10.1007/s00339-021-05255-5

    Article  ADS  Google Scholar 

  31. N.T. Hung, N.H. Lam, A.D. Nguyen, L.H. Bac, N.N. Trung, D.D. Dung, Y.S. Kim, N. Tsogbadrakh, T. Ochirkhuyag, D. Odkhuu, Intrinsic and tunable ferromagnetism in Bi0.5Na0.5TiO3 through CaFeO3-δ modification. Sci. Rep. 10, 6189 (2020). https://doi.org/10.1038/s41598-020-62889-w

    Article  ADS  Google Scholar 

  32. Y. Qiao, W. Li, Y. Zhao, Y. Zhang, W. Cao, W. Fei, Local order and oxygen ion conduction induced high-temperature colossal permittivity in lead-free Bi0.5Na0.5TiO3-based systems. ACS Appl. Energy Mater. 1, 956–962 (2018). https://doi.org/10.1021/acsaem.7b00347

    Article  Google Scholar 

  33. X. Liu, H. Fan, J. Shi, L. Wang, H. Du, Enhanced ionic conductivity of Ag addition in acceptor-doped Bi0.5Na0.5TiO3 ferroelectric. RSC Adv. 6, 30623–30627 (2016). https://doi.org/10.1039/C6RA00682E

    Article  ADS  Google Scholar 

  34. M.M. Hejazi, E. Taghaddos, A. Safari, Reduced leakage current and enhanced ferroelectric properties in Mn-doped Bi0.5Na0.5TiO3-based thin films. J. Mater. Sci. 48, 3511–3516 (2013). https://doi.org/10.1007/s10853-013-7144-9

    Article  ADS  Google Scholar 

  35. N.H. Tuan, V.K. Anh, N.B. Doan, L.H. Bac, D.D. Dung, D. Odkhuu, Theoretical and experimental studies on the influence of Cr incorporation on the structural, optical, and magnetic properties of Bi0.5K0.5TiO3 materials. J. Sol-Gel Sci. Tech. 87, 528–536 (2018). https://doi.org/10.1007/s10971-018-4764-1

    Article  Google Scholar 

  36. M. Bichurin, V. Petrov, A. Zakharov, D. Kovalenko, S.C. Yang, D. Maurya, V. Bedekar, S. Priya, Magnetoelectric interactions in lead-based and lead-free composites. Materials 4, 651–702 (2011). https://doi.org/10.3390/ma4040651

    Article  ADS  Google Scholar 

  37. K.P. Jayachandran, J.M. Guedes, H.C. Rodrigues, Solutions for maximum coupling in multiferroic magnetoelectric composites by materials design. Sci. Rep. 8, 4866 (2018). https://doi.org/10.1038/s41598-018-22964-9

    Article  ADS  Google Scholar 

  38. I.Z. Zhumatayeva, I.E. Kenzhina, A.L. Kozlovskiy, M.V. Zdorovets, The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics. J. Mater. Sci. Mater Electron. 31, 6764–6772 (2020). https://doi.org/10.1007/s10854-020-03234-9

    Article  Google Scholar 

  39. S.V. Trukhanov, I.O. Troyanchuk, M. Hervieu, H. Szymczak, K. Barner, Magnetic and electrical properties of LBaMn2O6-γ (L=Pr, Nd, Sm, Eu, Gd, Tb) manganites. Phys. Rev. B 66, 184424 (2002). https://doi.org/10.1103/PhysRevB.66.184424

    Article  ADS  Google Scholar 

  40. C. Zhang, J. Su, X. Wang, F. Huang, J. Zhang, Y. Liu, L. Zhang, K. Min, Z. Wang, X. Lu, F. Yan, J. Zhu, Study on magnetic and dielectric properties of YMnO3 ceramics. J. Alloys Compound. 509, 7738–7741 (2011). https://doi.org/10.1016/j.jallcom.2011.04.128

    Article  Google Scholar 

  41. Z. Heydariyan, R. Monsef, E.A. Dawi, M.S. Niasari, EuMnO3/EuMn2O5/MWCNT nanocomposites: Insights into synthesis and applications as potential materials for development of hydrogen storage capacity. Fuel 351, 128885 (2023). https://doi.org/10.1016/j.fuel.2023.128885

    Article  Google Scholar 

  42. S. Gholamrezaei, M. Ghanbari, O. Amiri, M.S. Niasari, L.K. Foong, BaMnO3 nanostructures: simple ultrasonic fabrication and novel catalytic agent toward oxygen evolution of water splitting reaction. Ultra. Sonochem. 61, 104829 (2020). https://doi.org/10.1016/j.ultsonch.2019.104829

    Article  Google Scholar 

  43. S. Gholamrezaei, M.S. Niasari, Sonochemical synthesis of SrMnO3 nanoparticels as an efficient and new catalysis for O2 evolution from water splitting reaction. Ultra. Sonochem. 40, 651–663 (2018). https://doi.org/10.1016/j.ultsonch.2017.08.012

    Article  Google Scholar 

  44. T. Lonkai, D.G. Tomuta, U. Amann, J. Ihringer, R.W.A. Hendrikx, D.M. Tobbens, J.A. Mydosh, Development of the high-temperature phase of hexagonal manganites. Phys. Rev. B 69, 134108 (2004). https://doi.org/10.1103/PhysRevB.69.134108

    Article  ADS  Google Scholar 

  45. T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, H. Takagi, Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001). https://doi.org/10.1103/PhysRevB.64.104419

    Article  ADS  Google Scholar 

  46. B.B.V. Aken, T.T.M. Palstra, A. Filiooetti, N.A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nature Mater. 3, 164–170 (2004). https://doi.org/10.1038/nmat1080

    Article  ADS  Google Scholar 

  47. A. Munoz, J.A. Alonso, M.J.M. Lope, M.T. Casais, J.L. Martinez, M.T.F. Diaz, Magnetic structure of hexagonal RMnO3 (R=Y, Sc): Thermal evolution from neutron powder diffraction data. Phys. Rev. B 62, 9498 (2000). https://doi.org/10.1103/PhysRevB.62.9498

    Article  ADS  Google Scholar 

  48. W. Hume-Rothery, B.R. Coles, Atomic theory for students of metallurgy (The Institute of Metals, London, 1969)

    Google Scholar 

  49. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–765 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  50. E. Erdem, S. Schaab, W. Jo, A. Ozarowski, J.V. Tol, R.A. Eichel, High-frequency EPR analysis of MnO2-doped [Bi0.5Na0.5]TiO3-BaTiO3 piezoelectric ceramics–manganese oxidation states and materials ‘hardening’. Ferroelectrics 428, 116–121 (2012). https://doi.org/10.1080/00150193.2012.675831

    Article  ADS  Google Scholar 

  51. F. Li, J. Zhai, B. Shen, X. Liu, H. Zeng, Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.20.1)TiO3 ergodic relaxor ceramics. Mater. Res. Lett. 6, 345–352 (2018). https://doi.org/10.1080/21663831.2018.1457095

    Article  Google Scholar 

  52. M.H. Hejazi, E. Taghaddos, A. Safari, Reduced leakage current and enhanced ferroelectric properties in Mn-doped Bi0.5Na0.5TiO3-based thin films. J. Mater. Sci. 48, 3511–3516 (2013). https://doi.org/10.1007/s10853-013-7144-9

    Article  ADS  Google Scholar 

  53. J. Anthoniappen, C.S. Tu, P.Y. Chen, C.S. Chen, Y.U. Idzerda, S.J. Chiu, Raman spectra and structural stability in B-site manganese doped (Bi0.5Na0.5)0.925Ba0.075TiO3 relaxor ferroelectric ceramics. J. Eur Ceram. Soc. 35, 3495–3506 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.05.002

    Article  Google Scholar 

  54. E. Aksel, P. Jakes, E. Erdem, D.M. Smyth, A. Ozarowski, J. van Tol, J.L. Jones, R.A. Eichel, Processing of manganese-doped [Bi0.5Na0.5]TiO3 ferroelectrics: reduction and oxidation reactions during calcination and sintering. J. Am. Ceram. Soc. 94, 1363–1369 (2011). https://doi.org/10.1111/j.1551-2916.2010.04249.x

    Article  Google Scholar 

  55. C. Chatzichristodoulou, P. Norby, P.V. Hendriksen, M.B. Mogensen, Size of oxide vacancies in fluorite and perovskite structured oxides. J. Electroceram. 34, 100–107 (2015). https://doi.org/10.1007/s10832-014-9916-2

    Article  Google Scholar 

  56. S.V. Trukhanov, M.B. Bushinsky, I.O. Troyanchuk, H. Szymczak, Magnetic ordering in La1-xSrxMnO3-x/2 anion-deficient manganites. J. Exp. Theor. Phys. 99, 756–765 (2004). https://doi.org/10.1134/1.1826167

    Article  ADS  Google Scholar 

  57. S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, H. Szymczak, Magnetic properties of anion-deficient La1−xBaxMnO3−x/2 (0≤x≤0.30) manganites. J. Exp. Theor. Phys. 96, 110–117 (2003). https://doi.org/10.1134/1.1545390

    Article  ADS  Google Scholar 

  58. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich, K. Kadyrzhanov, Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 20, 4851 (2020). https://doi.org/10.3390/s20174851

    Article  ADS  Google Scholar 

  59. U. Holzwarth, N. Gibson, The Scherrer equation versus de “Debye-Scherrer euqation. Nature Nanotech. 6, 534 (2011). https://doi.org/10.1038/nnano.2011.145

    Article  ADS  Google Scholar 

  60. M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, Theoretical and experimental investigation of Raman modes ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J. Appl. Phys. 113, 194106 (2013). https://doi.org/10.1063/1.4804940

    Article  ADS  Google Scholar 

  61. J. Suchanicz, I.J. Sumara, T.V. Kruzina, Raman and infrared spectroscopy of Na0.5Bi0.5TiO3-BaTiO3 ceramics. J. Electroceram. 27, 45–50 (2011). https://doi.org/10.1007/s10832-011-9648-5

    Article  Google Scholar 

  62. S.V. Trukhanov, V.V. Fedotova, A.V. Trukhanov, S.G. Stepin, H. Szymczak, Synthesis and structure of nanocrystalline La0.50Ba0.50MnO3. Crystallogr. Rep. 53, 1177–1180 (2008). https://doi.org/10.1134/S1063774508070158

    Article  ADS  Google Scholar 

  63. P. Makula, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  Google Scholar 

  64. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci Mater. Electron. 31, 11729–11740 (2020). https://doi.org/10.1007/s10854-020-03724-w

    Article  Google Scholar 

  65. N.D. Quan, N.V. Quyet, L.H. Bac, D.V. Thiet, V.N. Hung, D.D. Dung, Structural, ferroelectric, optical properties of A-site-modified Bi0.5(Na0.78K0.22)05Ti0.97Zr0.03O3 lead-free piezoceramics. J. Phys. Chem. Solids 77, 62–67 (2015). https://doi.org/10.1016/j.jpcs.2014.10.010

    Article  ADS  Google Scholar 

  66. D.D. Dung, N.T. Hung, Magnetic properties of (1–x)Bi0.5Na0.5TiO3+xSrCoO3-δ solid solution materials. Appl. Phys. A 126, 240 (2020). https://doi.org/10.1007/s00339-020-3409-8

    Article  ADS  Google Scholar 

  67. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, Magnetic phase transitions in the anion-deficient La1-xBaxMnO3-x/2 (0 ≤ x ≤ 0.50) manganites. J. Phys Condens. Matter. 15, 1783–1795 (2003). https://doi.org/10.1088/0953-8984/15/10/324

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2019.366.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DDD, NHL, NQD; methodology: LXD, NHL, NDQ; formal analysis and investigation: DDD, NHL, NQD, PVanV; writing–original draft preparation: NQD, NHL; all authors wrote, read and approved the final manuscript.

Corresponding author

Correspondence to Dang Duc Dung.

Ethics declarations

Conflict of interest

The author(s) declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dung, N.Q., Lam, N.H., Dien, L.X. et al. Enhanced room temperature ferromagnetism in YMnO3-modified lead-free ferroelectric Bi0.5Na0.5TiO3 materials. Appl. Phys. A 129, 547 (2023). https://doi.org/10.1007/s00339-023-06820-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06820-w

Keywords

Navigation