Skip to main content
Log in

The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The paper presents the results of a study of structural characteristics, as well as the possibility of using Li0.15Sr0.85TiO3 ceramics as anode materials for lithium-ion batteries. It has been established that the structure of ceramics is an accumulation of dendritic agglomerates consisting of spherical and spherical nanoparticles with a developed specific surface. According to X-ray phase analysis, the ceramic crystal structure is a mixture of two phases: cubic SrTiO3 and orthorhombic Li2Ti3O7, with a predominance of the SrTiO3 phase. During the life tests, it was found that in the case of the 1000 mAh/g mode, the resource number of cycles is close to 480–500 cycles, which is typical for most silicon-based structures that are standardly used as the basis for lithium-ion batteries. An increase in the charging capacity to 1500 mA h/g leads to a slight decrease in the resource lifetime—420 cycles to a decrease in capacity below 80%. Based on the conducted tests of life tests, the prospects of using ceramics based on Li0.15Sr0.85TiO3 as the basis for lithium-ion batteries have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.P. Sukul et al., Crystal phase induced upconversion enhancement in Er3+/Yb3+ doped SrTiO3 ceramic and its temperature sensing studies. Spectrochim. Acta A 212, 78–87 (2019)

    Article  CAS  Google Scholar 

  2. M. Lewin et al., Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO3 ceramics. Adv. Funct. Mater. 28(42), 1802834 (2018)

    Article  Google Scholar 

  3. S. Chen et al., The effects of inequivalent La3+ introduction on the structure and dielectric properties of SrTiO3 ceramic at microwave range. Mater. Chem. Phys. 216, 339–344 (2018)

    Article  CAS  Google Scholar 

  4. M. Qin et al., Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity. Acta Mater. 164, 76–89 (2019)

    Article  CAS  Google Scholar 

  5. Z. Wang et al., Sintering behavior, phase evolutions and microwave dielectric properties of LaGaO3-SrTiO3 ceramics modified by CeO2 additives. Ceram. Int. 44(6), 6601–6606 (2018)

    Article  CAS  Google Scholar 

  6. A.V. Trukhanov et al., Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J. Alloys Compd. 791, 522–529 (2019)

    Article  CAS  Google Scholar 

  7. X. Liu et al., Enhanced electrostrictive effects in nonstoichiometric 0.99Bi0.505(Na0.8K0.2)0.5-xTiO3-0.01SrTiO3 lead-free ceramics. Mater. Res. Bull. 97, 215–221 (2018)

    Article  CAS  Google Scholar 

  8. A. Gupta, R. Kumar, S. Singh, Coexistence of negative and positive electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3-0.1SrTiO3 nanocrystalline ceramics. Scripta Mater. 143, 5–9 (2018)

    Article  CAS  Google Scholar 

  9. R.N. Perumal, V. Athikesavan, P. Nair, Influence of lead titanate additive on the structural and electrical properties of Na0.5Bi0.5TiO3-SrTiO3 piezoelectric ceramics. Ceram. Int. 44(11), 13259–13266 (2018)

    Article  CAS  Google Scholar 

  10. N. Huang et al., Energy storage properties of MgO-doped 0.5Bi0.5Na0.5TiO3-0.5SrTiO3 ceramics. Ceram. Int. 45(12), 14921–14927 (2019)

    Article  CAS  Google Scholar 

  11. S. Praharaj et al., Origin of relaxor behavior in 0.78(Na0.5Bi0.5)TiO3-0.2SrTiO3-0.02BaTiO3 ceramic: an electrical modulus study. Mater. Res. Bull. 106, 459–464 (2018)

    Article  CAS  Google Scholar 

  12. C. Wu et al., The effect of reduced graphene oxide on microstructure and thermoelectric properties of Nb-doped A-site-deficient SrTiO3 ceramics. J. Alloys Compd. 786, 884–893 (2019)

    Article  CAS  Google Scholar 

  13. D. Liu et al., Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering. J. Eur. Ceram. Soc. 38(2), 807–811 (2018)

    Article  CAS  Google Scholar 

  14. A.L. Kozlovskiy et al., Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A= Ba, Ca, Sr). Ceram. Int. 45(14), 17236–17242 (2019)

    Article  CAS  Google Scholar 

  15. G. Wang et al., High electromechanical strain properties in SrTiO3-modified Bi1/2Na1/2TiO3-KTaO3 lead-free piezoelectric ceramics under low electric field. Sens. Actuators A 293, 1–6 (2019)

    Article  CAS  Google Scholar 

  16. M.M. Salem et al., Structural, electric and magnetic properties of (BaFe11.9Al0.1O19)1-x-(BaTiO3)x composites. Compos. B 174, 107054 (2019)

    Article  CAS  Google Scholar 

  17. L. Yan et al., Extra high temperature coefficient in semiconducting BaTiO3-(Bi0.5Na0.5)TiO3-SrTiO3 ceramics. Ceram. Int. 45(2), 2185–2193 (2019)

    Article  CAS  Google Scholar 

  18. A. Kozlovskiy, I. Kenzhina, M. Zdorovets, Synthesis, phase composition and magnetic properties of double perovskites of A(FeM)O4–x type (A = Ce; M = Ti). Ceram. Int. 45(7), 8669–8676 (2019)

    Article  CAS  Google Scholar 

  19. J. Suchanicz et al., SrTiO3-doping effect on dielectric and ferroelectric behavior of Na0.5Bi0.5TiO3 ceramics. Ferroelectrics 524(1), 9–13 (2018)

    Article  CAS  Google Scholar 

  20. P. Ren et al., Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1-0.1TiO3 based ceramics. J. Alloys Compd. 742, 683–689 (2018)

    Article  CAS  Google Scholar 

  21. M.V. Zdorovets, A.L. Kozlovskiy, Study of the effect of La3+ doping on the properties of ceramics based on BaTiOx. Vacuum 168, 108838 (2019)

    Article  CAS  Google Scholar 

  22. J. Macías et al., Compromising between phase stability and electrical performance: SrVO3–SrTiO3 solid solutions as solid oxide fuel cell anode components. Chemsuschem 12(1), 240–251 (2019)

    Article  Google Scholar 

  23. X. Wang et al., Dielectric relaxation properties of SrTiO3 ceramics modulated by stoichiometry. Ceram. Int. 44(5), 4740–4743 (2018)

    Article  CAS  Google Scholar 

  24. J. Lin et al., Outstanding optical temperature sensitivity and dual mode temperature dependent photoluminescence in Ho3+ doped (K, Na) NbO3–SrTiO3 transparent ceramics. J. Am. Ceram. Soc. 102, 4710–4720 (2019)

    Article  CAS  Google Scholar 

  25. J. Liu et al., Dielectric relaxations in fine-grained SrTiO3 ceramics with Cu and Nb co-doping. Ceram. Int. 45(8), 10334–10341 (2019)

    Article  CAS  Google Scholar 

  26. E.K. Abdel-Khalek, E.A. Mohamed, I. Kashif, Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic. Phys. B 530, 242–250 (2018)

    Article  CAS  Google Scholar 

  27. F.H. Margha, R.M.M. Morsi, E.M.A. Hamzawy, Characterization and electrical properties of tausonite (SrTiO3) in nano ceramic composites. J. Mater. Sci.: Mater. Electron. 30, 16257–16265 (2019)

    CAS  Google Scholar 

  28. X. Wang et al., Room temperature multiferroic properties of Fe-doped nonstoichiometric SrTiO3 ceramics at both A and B sites. Solid State Commun. 289, 22–26 (2019)

    Article  CAS  Google Scholar 

  29. S. Singh et al., Dy doped SrTiO3: a promising anodic material in solid oxide fuel cells. Int. J. Hydrogen Energy 43(41), 19242–19249 (2018)

    Article  CAS  Google Scholar 

  30. D.-Q. Liu et al., Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics. Chin. Phys. B 27(4), 047205 (2018)

    Article  Google Scholar 

  31. H.A. Laasri et al., Investigation of Sr1-xCaxTiO3 ceramics dedicated to high-frequency lead-free components. Funct. Mater. Lett. 11(05), 1850005 (2018)

    Article  CAS  Google Scholar 

  32. C. Chen et al., Influence of Bi on the thermoelectric properties of SrTiO3-δ. J. Mater. 5(1), 88–93 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhumatayeva, I.Z., Kenzhina, I.E., Kozlovskiy, A.L. et al. The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics. J Mater Sci: Mater Electron 31, 6764–6772 (2020). https://doi.org/10.1007/s10854-020-03234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03234-9

Navigation