Skip to main content
Log in

Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article is devoted to the study of the efficiency of thermal annealing of nanostructures for phase transformations of the FeCo – Fe2CoO4/Co3O4-spinel type, as well as the subsequent application of the obtained nanotubes as a basis for anode materials of lithium-ion batteries. The choice of these types of nanotubes for use as a basis for anode materials is due to their structure, as well as the great potential of using spinel structures in this area, interest in which is manifested due to the possibility of accelerating lithiation processes and long-term preservation of the specific capacity of batteries. During the study, it was found that for spinel structures, the formation of oxide growths on the surface of nanotubes, the presence of which is associated with oxidative processes during annealing, is observed. Testing the applicability of these structures as anode materials showed that the formation of oxide spinel structures of type Fe2CoO4/Co3O4 leads to an increase in the number of cycles by 1.5–1.7 times compared to the original nanotubes. The efficiency of increasing the lifetime of anode materials is due to an increase in resistance to degradation of Fe2CoO4/Co3O4 structures, due to the formation of oxide phases, leading to an acceleration of lithation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sobhan Mortazavi-Derazkola et al., Fabrication and characterization of Fe3O4@ SiO2@ TiO2@ Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. Journal of Energy Chemistry 26(1), 17–23 (2017)

    Article  Google Scholar 

  2. M. Salavati-Niasari, Z. Fereshteh, F. Davar, Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28(1), 126–130 (2009)

    Article  CAS  Google Scholar 

  3. F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull. 63, 51–57 (2015)

    Article  CAS  Google Scholar 

  4. F. Ansari, A. Sobhani, M. Salavati-Niasari, Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J. Colloid Interface Sci. 514, 723–732 (2018)

    Article  CAS  Google Scholar 

  5. M. Masjedi-Arani, M. Salavati-Niasari, Novel synthesis of Zn2GeO4/graphene nanocomposite for enhanced electrochemical hydrogen storage performance. Int. J. Hydrogen Energy 42(27), 17184–17191 (2017)

    Article  CAS  Google Scholar 

  6. F. Beshkar, H. Khojasteh, M. Salavati-Niasari, Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. J. Colloid Interface Sci. 497, 57–65 (2017)

    Article  CAS  Google Scholar 

  7. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Nd2Zr2O7-Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. 180, 27–30 (2016)

    Article  CAS  Google Scholar 

  8. A. Salehabadi, M. Salavati-Niasari, M. Ghiyasiyan-Arani, Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J. Alloy. Compd. 745, 789–797 (2018)

    Article  CAS  Google Scholar 

  9. Deo Prakash et al., Synthesis, purification and microstructural characterization of nickel doped carbon nanotubes for spintronic applications. Ceramics International 42(5), 5600–5606 (2016)

    Article  CAS  Google Scholar 

  10. A. Rais et al., Copper substitution effect on the structural properties of nickel ferrites. Ceram. Int. 40(9), 14413–14419 (2014)

    Article  CAS  Google Scholar 

  11. R. Al-Gaashani et al., XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39(3), 2283–2292 (2013)

    Article  CAS  Google Scholar 

  12. Y. Al-Douri et al., Detecting the DNA of dengue serotype 2 using aluminium nanoparticle doped zinc oxide nanostructure: Synthesis, analysis and characterization. J. Market. Res. 9(3), 5515–5523 (2020)

    CAS  Google Scholar 

  13. Abdelmadjid Bouhemadou et al., Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh2O4 and CdRh2O4. Journal of Alloys and Compounds 774, 299–314 (2019)

    Article  CAS  Google Scholar 

  14. Mohammed El Amine. Monir et al., Doping-induced half-metallic ferromagnetism in vanadium and chromium-doped alkali oxides K 2 O and Rb 2 O: Ab initio method. Journal of Superconductivity and Novel Magnetism 30(8), 2197–2210 (2017)

    Article  Google Scholar 

  15. A. Bouhemadou et al., Structural, elastic, electronic, chemical bonding and optical properties of Cu-based oxides ACuO (A= Li, Na, K and Rb): An ab initio study. Comput. Mater. Sci. 81, 561–574 (2014)

    Article  CAS  Google Scholar 

  16. Mohammed Ameri et al., Structural, elastic, thermodynamic and electronic properties of LuX (X= N, Bi and Sb) compounds: first principles calculations. Phase Transitions 89(12), 1236–1252 (2016)

    Article  CAS  Google Scholar 

  17. Z. Charifi et al., Phase transition of Nowotny-Juza NaZnX (X= P, As and Sb) compounds at high pressure: theoretical investigation of structural, electronic and vibrational properties. Comput. Mater. Sci. 87, 187–197 (2014)

    Article  CAS  Google Scholar 

  18. Y. Al-Douri, Structural phase transition of boron nitride compound. Solid State Commun. 132(7), 465–470 (2004)

    Article  CAS  Google Scholar 

  19. Suresh Sagadevan et al., Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles. Applied Physics A 125(8), 1–9 (2019)

    Google Scholar 

  20. Voo Chung Sung. Tony et al., Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube. Materials Research 20(6), 1658–1668 (2017)

    Article  CAS  Google Scholar 

  21. Xiaoli Zhou et al., Self-assembly of porphyrin and fullerene supramolecular complex into highly ordered nanostructure by simple thermal annealing. Chemistry of Materials 20(11), 3551–3553 (2008)

    Article  CAS  Google Scholar 

  22. T. Gheiratmand et al., Effect of annealing on soft magnetic behavior of nanostructured (Fe0. 5Co0. 5) 73.5 Si13. 5B9Nb3Cu1 ribbons. J. Alloy. Compd. 582, 79–82 (2014)

    Article  CAS  Google Scholar 

  23. W.-B. Cui, Y.K. Takahashi, K. Hono, Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product. Adv. Mater. 24(48), 6530–6535 (2012)

    Article  CAS  Google Scholar 

  24. Ming Wen et al., Ru-capped/FeCo nanoflowers with high catalytic efficiency towards hydrolytic dehydrogenation. Journal of Power Sources 243, 299–305 (2013)

    Article  CAS  Google Scholar 

  25. T.I. Zubar et al., Control of growth mechanism of electrodeposited nanocrystalline NiFe films. J. Electrochem. Soc. 166(6), D173–D180 (2019)

    Article  CAS  Google Scholar 

  26. A. Kozlovskiy et al., Study of Ni/Fe nanotube properties. Nucl. Instrum. Methods Phys. Res., Sect. B 365, 663–667 (2015)

    Article  CAS  Google Scholar 

  27. K.-L. Wu, Yu. Rui, X.-W. Wei, Monodispersed FeNi 2 alloy nanostructures: solvothermal synthesis, magnetic properties and size-dependent catalytic activity. CrystEngComm 14(22), 7626–7632 (2012)

    Article  CAS  Google Scholar 

  28. A.L. Kozlovskiy et al., Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A= Ba, Ca, Sr). Ceram. Int. 45(14), 17236–17242 (2019)

    Article  CAS  Google Scholar 

  29. Fangyuan Qiu et al., Synthesis of Cu@ FeCo core–shell nanoparticles for the catalytic hydrolysis of ammonia borane. International Journal of Hydrogen Energy 39(1), 436–441 (2014)

    Article  CAS  Google Scholar 

  30. A.E. Shumskaya et al., Template synthesis and magnetic characterization of FeNi nanotubes. Progress In Electromagnetics Research 75, 23–30 (2017)

    Article  Google Scholar 

  31. M. Gong, S. Ren, Phase transformation-driven surface reconstruction of FeNi nanostructures. Chem. Mater. 27(22), 7795–7800 (2015)

    Article  CAS  Google Scholar 

  32. El. Essawy, A. Noha et al., A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste. Journal of the Air & Waste Management Association 67(3), 358–370 (2017)

    Article  Google Scholar 

  33. A.L. Kozlovskiy et al., Study of phase transformations, structural, corrosion properties and cytotoxicity of magnetite-based nanoparticles. Vacuum 163, 236–247 (2019)

    Article  CAS  Google Scholar 

  34. Maogang Gong et al., Phase transformation-induced tetragonal FeCo nanostructures. Nano letters 14(11), 6493–6498 (2014)

    Article  CAS  Google Scholar 

  35. I.A. Al-Omari, David J. Sellmyer, Magnetic properties of nanostructured CoSm/FeCo films. Physical Review B 52(5), 3441 (1995)

    Article  CAS  Google Scholar 

  36. A.L. Kozlovskiy et al., Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes. Phys. Met. Metall. 118(2), 164–169 (2017)

    Article  CAS  Google Scholar 

  37. N.I. Shtanko et al., Preparation of permeability-controlled track membranes on the basis of ‘smart’polymers. J. Membr. Sci. 179(1–2), 155–161 (2000)

    Article  CAS  Google Scholar 

  38. Bensong Chen et al., Branched silicon nanotubes and metal nanowires via AAO-template-assistant approach. Advanced Functional Materials 20(21), 3791–3796 (2010)

    Article  CAS  Google Scholar 

  39. C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994)

    Article  CAS  Google Scholar 

  40. Tatiana Zubar et al., Features of the growth processes and magnetic domain structure of NiFe nano-objects. The Journal of Physical Chemistry C 123(44), 26957–26964 (2019)

    Article  CAS  Google Scholar 

  41. A.V. Trukhanov et al., AC and DC-shielding properties for the Ni80Fe20/Cu film structures. J. Magn. Magn. Mater. 443, 142–148 (2017)

    Article  CAS  Google Scholar 

  42. Shumskaya, A. E., et al. "Correlation between structural and magnetic properties of FeNi nanotubes with different lengths." Journal of Alloys and Compounds 810 (2019): 151874.

  43. Fei Ke et al., MOG-derived porous FeCo/C nanocomposites as a potential platform for enhanced catalytic activity and lithium-ion batteries performance. Journal of Colloid and Interface Science 522, 283–290 (2018)

    Article  CAS  Google Scholar 

  44. H. Yang, Platinum-based electrocatalysts with core-shell nanostructures. Angew. Chem. Int. Ed. 50(12), 2674–2676 (2011)

    Article  CAS  Google Scholar 

  45. K.K. Kadyrzhanov et al., Study of magnetic properties of Fe100-xNix nanostructures using the mössbauer spectroscopy method. Nanomaterials 9(5), 757 (2019)

    Article  CAS  Google Scholar 

  46. A. Kozlovskiy et al., Mossbauer research of Fe/Co nanotubes based on track membranes. Nucl. Instrum. Methods Phys. Res., Sect. B 381, 103–109 (2016)

    Article  CAS  Google Scholar 

  47. T.I. Zubar et al., Retraction: anomalies in growth of electrodeposited Ni–Fe nanogranular films. CrystEngComm 21(14), 2464–2464 (2019)

    Article  CAS  Google Scholar 

  48. Egor Kaniukov et al., Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template. Philosophical Magazine 97(26), 2268–2283 (2017)

    Article  CAS  Google Scholar 

  49. M.V. Zdorovets, A.L. Kozlovskiy, Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries. Sci. Rep. 9(1), 1–12 (2019)

    Article  CAS  Google Scholar 

  50. O.A. Petrii, Electrosynthesis of nanostructures and nanomaterials. Russ. Chem. Rev. 84(2), 159 (2015)

    Article  CAS  Google Scholar 

  51. A.V. Truhanov et al., Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloy. Compd. 754, 247–256 (2019)

    Article  Google Scholar 

  52. Chengzhou Zhu et al., Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Analytical chemistry 87(1), 230–249 (2014)

    Article  Google Scholar 

  53. EYu. Kaniukov et al., Evolution of the polyethylene terephthalate track membranes parameters at the etching process. Journal of Contemporary Physics (Armenian Academy of Sciences) 52(2), 155–160 (2017)

    Article  CAS  Google Scholar 

  54. M.V. Zdorovets, A.L. Kozlovskiy, Study of phase transformations in Co/CoCo2O4 nanowires. Journal of Alloys and Compounds 815, 152450 (2020)

    Article  CAS  Google Scholar 

  55. Ling-Hai. Xie et al., Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto) electronics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371(20), 20120337 (2013)

    Article  Google Scholar 

  56. Berna Ozkale et al., Multisegmented FeCo/Cu nanowires: electrosynthesis, characterization, and magnetic control of biomolecule desorption. ACS applied materials & interfaces 7(13), 7389–7396 (2015)

    Article  CAS  Google Scholar 

  57. Prida, V. M., et al. Electrochemical synthesis of magnetic nanowires with controlled geometry and magnetic anisotropy. Magnetic Nano-and Microwires. Woodhead Publishing, 2015. 41–104.

  58. A. Shumskaya et al., Evolution of morphology, structure, and magnetic parameters of Ni nanotubes with growth in pores of a PET template. Journal of Magnetism and Magnetic Materials 497, 165913 (2019)

    Article  Google Scholar 

  59. K.K. Kadyrzhanov et al., Synthesis and properties of ferrite-based nanoparticles. Nanomaterials 9(8), 1079 (2019)

    Article  CAS  Google Scholar 

  60. A. Kozlovskiy et al., Study of the effect of irradiation with Ca5+ ions on the increase in Ni nanotubes lifetime, applicable as the basis for lithium-ion batteries. Materials Research Express 6(8), 085074 (2019)

    Article  CAS  Google Scholar 

  61. A. Kozlovskiy, M. Zdorovets, Study of the applicability of directional modification of nanostructures to improve the efficiency of their performance as the anode material of lithium-ion batteries. Materials Research Express 6(7), 075066 (2019)

    Article  CAS  Google Scholar 

  62. A.L. Kozlovskiy et al., The influence of thermal annealing on structural properties of Ni nanotubes. Vacuum 153, 254–261 (2018)

    Article  CAS  Google Scholar 

  63. Y.S. Li et al., Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scripta Mater. 59(4), 475–478 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdorovets, M.V., Kozlovskiy, A.L., Shlimas, D.I. et al. Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J Mater Sci: Mater Electron 32, 16694–16705 (2021). https://doi.org/10.1007/s10854-021-06226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06226-5

Navigation