Skip to main content

Advertisement

Log in

Investigation of conductivity and shielding efficiency of the free-standing PVA–GO–Ag composite thin films in terahertz regime using time-domain terahertz spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Terahertz time-domain spectroscopy has been used to study the THz optical properties of polyvinyl alcohol–graphene oxide–silver (PVA–GO–Ag) composite films with varying weight fractions of silver nanoparticles in the range of 0.0–0.64%. The measured THz AC conductivities are analyzed using the formalisms based on universal dielectric response and Drude-Smith models. The outputs from the analysis of these two formalisms are compared and used to get accurate physical insights into charge transport. The samples being lightweight and flexible and having sub-100 \({\upmu }\)m thickness, show electromagnetic interference shielding efficiency (SE) of \(\sim\) 2–3 dB below 1 THz that increases linearly between 4 and 8 dB above 1 THz. These SE values are found to arise mainly from the absorption and they are estimated to increase to \(\sim\) 10–50 dB of magnitude when the thickness is \(\sim\) 500 \({\upmu }\)m indicating potential application of these composite films as THz shielding materials and THz filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J. Axel Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston, The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50(4), 43001 (2017). https://doi.org/10.1088/1361-6463/50/4/043001

    Article  Google Scholar 

  2. P.U. Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging–modern techniques and applications. Laser Photonics Rev. 5(1), 124–166 (2011). https://doi.org/10.1002/lpor.201000011

    Article  ADS  Google Scholar 

  3. T.L. Cocker, L.V. Titova, S. Fourmaux, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M.A. El Khakani, F.A. Hegmann, Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film. Appl. Phys. Lett. 97(22), 221905 (2010). https://doi.org/10.1063/1.3518482

    Article  ADS  Google Scholar 

  4. H.J. Joyce, J.L. Boland, C.L. Davies, S.A. Baig, M.B. Johnston, A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond. Sci. Technol. 31(10), 103003 (2016). https://doi.org/10.1088/0268-1242/31/10/103003

    Article  ADS  Google Scholar 

  5. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), 266–280 (2005). https://doi.org/10.1088/0268-1242/20/7/018

    Article  ADS  Google Scholar 

  6. T. Kleine-Ostmann, T. Nagatsuma, A review on Terahertz communications research. J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011). https://doi.org/10.1007/s10762-010-9758-1

    Article  Google Scholar 

  7. J. Federici, L. Moeller, Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), 111101 (2010). https://doi.org/10.1063/1.3386413

    Article  ADS  Google Scholar 

  8. D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, M. Koch, Recent advances in terahertz imaging. Appl. Phys. B 68(6), 1085–1094 (1999). https://doi.org/10.1007/s003400050750

    Article  ADS  Google Scholar 

  9. B. Scherger, M. Scheller, C. Jansen, M. Koch, K. Wiesauer, Terahertz lenses made by compression molding of micropowders. Appl. Opt. 50(15), 2256–2262 (2011). https://doi.org/10.1364/AO.50.002256

    Article  ADS  Google Scholar 

  10. L. Ren, C.L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, J. Kono, Broadband Terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. Nano Lett. 12(2), 787–790 (2012). https://doi.org/10.1021/nl203783q

    Article  ADS  Google Scholar 

  11. Y.-J. Chiang, C.-S. Yang, Y.-H. Yang, C.-L. Pan, T.-J. Yen, An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Appl. Phys. Lett. 99(19), 191909 (2011). https://doi.org/10.1063/1.3660273

    Article  ADS  Google Scholar 

  12. J. Pan, H. Hu, Z. Li, J. Mu, Y. Cai, H. Zhu, Recent progress in two-dimensional materials for terahertz protection. Nanoscale Adv. 3(6), 1515–1531 (2021). https://doi.org/10.1039/D0NA01046D

    Article  ADS  Google Scholar 

  13. C. Jansen, S. Wietzke, V. Astley, D.M. Mittleman, M. Koch, Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies. Appl. Phys. Lett. 96(11), 111108 (2010). https://doi.org/10.1063/1.3341309

    Article  ADS  Google Scholar 

  14. D. Chen, H. Chen, A novel low-loss Terahertz waveguide: polymer tube. Opt. Express 18(4), 3762–3767 (2010). https://doi.org/10.1364/OE.18.003762

    Article  ADS  Google Scholar 

  15. M. Israr, J. Iqbal, A. Arshad, S.O. Aisida, I. Ahmad, A unique znfe2o4/graphene nanoplatelets nanocomposite for electrochemical energy storage and efficient visible light driven catalysis for the degradation of organic noxious in wastewater. J. Phys. Chem. Solids 140, 109333 (2020). https://doi.org/10.1016/j.jpcs.2020.109333

    Article  Google Scholar 

  16. S.O. Aisida, I. Ahmad, F.I. Ezema, Effect of calcination on the microstructural and magnetic properties of pva, pvp and peg assisted zinc ferrite nanoparticles. Phys. B 579, 411907 (2020). https://doi.org/10.1016/j.physb.2019.411907

    Article  Google Scholar 

  17. J. Iqbal, S.O. Aisida, Z. Iqbal, Z. Zafar, T.-K. Zhao, I. Ahmad, Solvothermal synthesis and enhancement of microstructural and magnetic properties of g-agfe3o4 nanocomposites. Materials Research Innovations, 1–6 (2022). https://doi.org/10.1080/14328917.2022.2109886. https://doi.org/10.1080/14328917.2022.2109886

  18. S. Nam, H. Woo Cho, T. Kim, D. Kim, B. June Sung, S. Lim, H. Kim, Effects of silica particles on the electrical percolation threshold and thermomechanical properties of epoxy/silver nanocomposites. Appl. Phys. Lett. 99(4), 43104 (2011). https://doi.org/10.1063/1.3615690

    Article  Google Scholar 

  19. S. Mahendia, A. Kumar Tomar, P.K. Goyal, S. Kumar, Y. Yusof, Z.Y. Ng, Y.H. Wong, M.R. Johan, Tuning of refractive index of poly(vinyl alcohol): Effect of embedding Cu and Ag nanoparticles. J. Appl. Phys. 113(8), 85604 (2013). https://doi.org/10.1063/1.4792473

    Article  Google Scholar 

  20. Y. Yusof, Z.Y. Ng, Y.H. Wong, M.R. Johan, The tunable permittivity of multi-walled carbon nanotubes/silver nanoparticles reinforced polyvinyl alcohol (PVA) nanocomposites at low frequency. Mater. Res. Express 5(8), 85604 (2018). https://doi.org/10.1088/2053-1591/aad442

    Article  Google Scholar 

  21. C. Cramer, M. Buscher, Complete conductivity spectra of fast ion conducting silver iodide/silver selenate glasses. Solid State Ionics 105(1), 109–120 (1998). https://doi.org/10.1016/S0167-2738(97)00456-6

    Article  Google Scholar 

  22. A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, J. Legrand, Experimental and Theoretical Study of AC Electrical Conduction Mechanisms of Semicrystalline Parylene C Thin Films. J. Phys. Chem. A 116(3), 1051–1058 (2012). https://doi.org/10.1021/jp207114u

    Article  Google Scholar 

  23. Rigved Nagarkar, J. Patel, Polyvinyl alcohol: A comprehensive study. Acta Sci. Pharm. Sci. 3(4), 34–44 (2019)

    Google Scholar 

  24. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, Characterization and some physical studies of pva/pvp filled with mwcnts. J. Mater. Res. Technol. 8, 904–913 (2019). https://doi.org/10.1016/j.jmrt.2018.04.023

    Article  Google Scholar 

  25. S. Gahlot, V. Kulshrestha, G. Agarwal, P.K. Jha, Synthesis and Characterization of PVA/GO Nanocomposite Films. Macromol. Symp. 357(1), 173–177 (2015). https://doi.org/10.1002/masy.201400220

    Article  Google Scholar 

  26. P.B. Pawar, S. Shukla, S. Saxena, Graphene oxide - polyvinyl alcohol nanocomposite based electrode material for supercapacitors. J. Power Sources 321, 102–105 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.127

    Article  ADS  Google Scholar 

  27. N. Theophile, H.K. Jeong, Electrochemical properties of poly(vinyl alcohol) and graphene oxide composite for supercapacitor applications. Chem. Phys. Lett. 669, 125–129 (2017). https://doi.org/10.1016/j.cplett.2016.12.029

    Article  ADS  Google Scholar 

  28. S. Morimune, T. Nishino, T. Goto, Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym. J.44(10), 1056–1063 (2012). https://doi.org/10.1038/pj.2012.58

    Article  Google Scholar 

  29. A.E.M. Abd Elhamid, H. Shawkey, A.A. Nada, M. Bechelany, Anomalous dielectric constant value of graphene oxide/polyvinyl alcohol thin film. Solid State Sci. 94, 28–34 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.05.013

    Article  ADS  Google Scholar 

  30. T. Cheng-an, Z. Hao, W. Fang, Z. Hui, Z. Xiaorong, W. Jianfang, Mechanical properties of graphene oxide/polyvinyl alcohol composite film. Polym. Polym. Compos. 25, 11–16 (2017). https://doi.org/10.1177/096739111702500102

    Article  Google Scholar 

  31. M. Aslam, M.A. Kalyar, Z.A. Raza, Investigation of structural and thermal properties of distinct nanofillers-doped pva composite films. Polym. Bull. 76, 73–86 (2019). https://doi.org/10.1007/s00289-018-2367-1

    Article  Google Scholar 

  32. S. Mahendia, A.K. Tomar, S. Kumar, Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J. Alloys Compd. 508(2), 406–411 (2010). https://doi.org/10.1016/j.jallcom.2010.08.075

    Article  Google Scholar 

  33. A.L. Waly, A.M. Abdelghany, A.E. Tarabiah, A comparison of silver nanoparticles made by green chemistry and femtosecond laser ablation and injected into a pvp/pva/chitosan polymer blend. J. Mater. Sci. 33, 23174–23186 (2022). https://doi.org/10.1007/s10854-022-09082-z

    Article  Google Scholar 

  34. S. Kumar, N. Kamaraju, B. Karthikeyan, M. Tondusson, E. Freysz, A.K. Sood, Terahertz Spectroscopy of Single-Walled Carbon Nanotubes in a Polymer Film: Observation of Low-Frequency Phonons. J. Phys. Chem. C 114(29), 12446–12450 (2010). https://doi.org/10.1021/jp103105h

    Article  Google Scholar 

  35. D. Polley, A. Barman, R.K. Mitra, Controllable terahertz conductivity in single walled carbon nanotube/polymer composites. J. Appl. Phys. 117(2), 23115 (2015). https://doi.org/10.1063/1.4905958

    Article  Google Scholar 

  36. D. Polley, A. Barman, R.K. Mitra, EMI shielding and conductivity of carbon nanotube-polymer composites at terahertz frequency. Optics Lett.39(6), 1541–1544 (2014). https://doi.org/10.1364/OL.39.001541

    Article  ADS  Google Scholar 

  37. W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, S. Chang, Terahertz wave modulation enhanced by laser processed PVA film on Si substrate. Sci. Rep. 8(1), 8304 (2018). https://doi.org/10.1038/s41598-018-26778-7

    Article  ADS  Google Scholar 

  38. M. González, J. Pozuelo, J. Baselga, Electromagnetic Shielding Materials in GHz Range. Chem. Record 18(7–8), 1000–1009 (2018). https://doi.org/10.1002/tcr.201700066

    Article  Google Scholar 

  39. C.M. Koo, F. Shahzad, P. Kumar, S. Yu, S.H. Lee, J.P. Hong, Polymer-based emi shielding materials. Advanced Materials for Electromagnetic Shielding, 177–217 (2018). https://doi.org/10.1002/9781119128625.ch9. Wiley Online Books

  40. V. Shukla, Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 1, 1640–1671 (2019). https://doi.org/10.1039/C9NA00108E

    Article  ADS  Google Scholar 

  41. S. Dong, Q. Shi, W. Huang, L. Jiang, Y. Cai, Flexible reduced graphene oxide paper with excellent electromagnetic interference shielding for terahertz wave. J. Mater. Sci. 29(20), 17245–17253 (2018). https://doi.org/10.1007/s10854-018-9818-1

    Article  Google Scholar 

  42. Q. Zou, C. Shi, B. Liu, D. Liu, D. Cao, F. Liu, Y. Zhang, W. Shi, Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti3C2Tx MXene fiber membranes. Nanotechnology 32(41), 415204 (2021). https://doi.org/10.1088/1361-6528/ac1296

    Article  ADS  Google Scholar 

  43. P. Saini, Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes, p. 3. IntechOpen, Rijeka (2012). https://doi.org/10.5772/48779

  44. L. Liu, A. Das, C.M. Megaridis, Terahertz shielding of carbon nanomaterials and their composites-a review and applications. Carbon 69, 1–16 (2014)

    Article  Google Scholar 

  45. G. Li, N. Amer, H.A. Hafez, S. Huang, D. Turchinovich, V.N. Mochalin, F.A. Hegmann, L.V. Titova, Dynamical control over terahertz electromagnetic interference shielding with 2d ti3c2t y mxene by ultrafast optical pulses. Nano Lett. 20(1), 636–643 (2019)

    Article  ADS  Google Scholar 

  46. H. Wan, N. Liu, J. Tang, Q. Wen, X. Xiao, Substrate-independent ti3c2t x mxene waterborne paint for terahertz absorption and shielding. ACS nano 15(8), 13646–13652 (2021)

    Article  Google Scholar 

  47. Q. Zou, W. Guo, L. Zhang, L. Yang, Z. Zhao, F. Liu, X. Ye, Y. Zhang, W. Shi, Mxene-based ultra-thin film for terahertz radiation shielding. Nanotechnology 31(50), 505710 (2020)

    Article  ADS  Google Scholar 

  48. J. Lloyd-Hughes, T.-I. Jeon, A Review of the Terahertz Conductivity of Bulk and Nano-Materials. J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012). https://doi.org/10.1007/s10762-012-9905-y

    Article  Google Scholar 

  49. T.L. Cocker, D. Baillie, M. Buruma, L.V. Titova, R.D. Sydora, F. Marsiglio, F.A. Hegmann, Microscopic origin of the drude-smith model. Phys. Rev. B 96(20), 205439 (2017)

    Article  ADS  Google Scholar 

  50. K.L. Krewer, M. Ballabio, M. Bonn, The drude-smith model for conductivity: de novo derivation and interpretation. arXiv preprint arXiv:2008.07913 (2020)

  51. B. Karthikeyan, M. Anija, R. Philip, In situ synthesis and nonlinear optical properties of au:ag nanocomposite polymer films. Appl. Phys. Lett. 88, 053104 (2006). https://doi.org/10.1063/1.2168667

    Article  ADS  Google Scholar 

  52. A.K. Jonscher, Alternating current diagnostics of poorly conducting thin films. Thin Solid Films 36(1), 1–20 (1976). https://doi.org/10.1016/0040-6090(76)90388-6

    Article  ADS  Google Scholar 

  53. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267(5613), 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  ADS  Google Scholar 

  54. N.V. Smith, Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B 64(15), 155106 (2001). https://doi.org/10.1103/PhysRevB.64.155106

    Article  ADS  Google Scholar 

  55. H. Němec, P. Kužel, V. Sundström, Far-infrared response of free charge carriers localized in semiconductor nanoparticles. Phys. Rev. B 79(11), 115309 (2009). https://doi.org/10.1103/PhysRevB.79.115309

    Article  ADS  Google Scholar 

  56. M. Walther, D.G. Cooke, C. Sherstan, M. Hajar, M.R. Freeman, F.A. Hegmann, Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B 76(12), 125408 (2007). https://doi.org/10.1103/PhysRevB.76.125408

    Article  ADS  Google Scholar 

  57. M. Martin, N. Prasad, M.M. Sivalingam, D. Sastikumar, B. Karthikeyan, Optical, phonon properties of zno-pva, zno-go-pva nanocomposite free standing polymer films for uv sensing. J. Mater. Sci. 29, 365–373 (2018). https://doi.org/10.1007/s10854-017-7925-z

    Article  Google Scholar 

  58. B. Karthikeyan, Optical, phonon and fluorescence properties of pva-go-zno free standing films. Appl. Phys. A 125, 847 (2019). https://doi.org/10.1007/s00339-019-3136-1

    Article  ADS  Google Scholar 

  59. S. Porel, S. Singh, S.S. Harsha, D.N. Rao, T.P. Radhakrishnan, Nanoparticle-embedded polymer: In situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem. Mater. 17, 9–12 (2005). https://doi.org/10.1021/cm0485963

    Article  Google Scholar 

  60. D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, D.G. Fernig, A rapid method to estimate the concentration of citrate capped silver nanoparticles from uv-visible light spectra. Analyst 139, 4855–4861 (2014). https://doi.org/10.1039/C4AN00978A

    Article  ADS  Google Scholar 

  61. L. Duvillaret, F. Garet, J. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996). https://doi.org/10.1109/2944.571775

    Article  ADS  Google Scholar 

  62. L. Duvillaret, F. Garet, J.-L. Coutaz, Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. Appl. Opt. 38(2), 409–415 (1999). https://doi.org/10.1364/AO.38.000409

    Article  ADS  Google Scholar 

  63. M. Scheller, C. Jansen, M. Koch, Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy. Optics Commun. 282(7), 1304–1306 (2009). https://doi.org/10.1016/j.optcom.2008.12.061

    Article  ADS  Google Scholar 

  64. X. Chen, E. Pickwell-MacPherson, A sensitive and versatile thickness determination method based on non-inflection terahertz property fitting. Sensors 19(19), 4118 (2019). https://doi.org/10.3390/s19194118

    Article  ADS  Google Scholar 

  65. S. Mukherjee, N.M.A. Kumar, P.C. Upadhya, N. Kamaraju, A review on numerical methods for thickness determination in terahertz time-domain spectroscopy. Eur. Phys. J. Special Topics 230(23), 4099–4111 (2021). https://doi.org/10.1140/epjs/s11734-021-00215-9

    Article  ADS  Google Scholar 

  66. M. Dressel, G. Gruner, Electrodynamics of solids: optical properties of electrons in matter (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511606168

  67. F. Yan, E.P.J. Parrott, B.S.-Y. Ung, E. Pickwell-MacPherson, Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices. J. Phys. Chem. C 119(12), 6813–6818 (2015). https://doi.org/10.1021/acs.jpcc.5b00465

    Article  Google Scholar 

  68. S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne, Dc and ac conductivity of carbon nanotubes polyepoxy composites. Macromolecules 36, 5187–5194 (2003). https://doi.org/10.1021/ma021263b

    Article  ADS  Google Scholar 

  69. N. Farman, M. Mumtaz, M.A. Mahmood, S.D. Khan, M.A. Zia, M. Raffi, M. Ahmed, I. Ahmad, Investigation of optical and dielectric properties of polyvinyl chloride and polystyrene blends in terahertz regime. Opt. Mater. 99, 109534 (2020). https://doi.org/10.1016/j.optmat.2019.109534

    Article  Google Scholar 

  70. A.K.G. Tapia, K. Tominaga, Temperature dependence of THz conductivity in polyaniline emeraldine salt-polyethylene pellets. J. Infrared Millimet. Terahertz Waves 41(3), 258–264 (2020). https://doi.org/10.1007/s10762-019-00650-9

    Article  Google Scholar 

  71. B. Vainas, D.P. Almond, J. Luo, R. Stevens, An evaluation of random R-C networks for modelling the bulk ac electrical response of ionic conductors. Solid State Ionics 126(1), 65–80 (1999). https://doi.org/10.1016/S0167-2738(99)00216-7

    Article  Google Scholar 

  72. S. Panteny, R. Stevens, C.R. Bowen, The frequency dependent permittivity and AC conductivity of random electrical networks. Ferroelectrics 319(1), 199–208 (2005). https://doi.org/10.1080/00150190590965884

    Article  ADS  Google Scholar 

  73. N.J. McCullen, D.P. Almond, C.J. Budd, G.W. Hunt, The robustness of the emergent scaling property of random RC network models of complex materials. J. Phys. D 42(6), 64001 (2009). https://doi.org/10.1088/0022-3727/42/6/064001

    Article  Google Scholar 

  74. A.K.G. Tapia, K. Tominaga, Conduction properties in polyaniline-polyethylene composites in the terahertz region. In: 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, pp. 1–2 (2012). https://doi.org/10.1109/IRMMW-THz.2012.6379494

  75. E. Helgren, K. Penney, M. Diefenbach, M. Longnickel, M. Wainwright, E. Walker, S. Al-Azzawi, H. Erhahon, J. Singley, Electrodynamics of the conducting polymer polyaniline on the insulating side of the metal-insulator transition. Phys. Rev. B 95(12), 125202 (2017). https://doi.org/10.1103/PhysRevB.95.125202

    Article  ADS  Google Scholar 

  76. J.B. Baxter, C.A. Schmuttenmaer, Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 110(50), 25229–25239 (2006). https://doi.org/10.1021/jp064399a

    Article  Google Scholar 

  77. P. Dutta, J. Afalla, A. Halder, S. Datta, K. Tominaga, Temperature-dependent conductivity of graphene oxide and graphene oxide-polyaniline nanocomposites studied by terahertz time-domain spectroscopy. J. Phys.l Chem. C 121(3), 1442–1448 (2017). https://doi.org/10.1021/acs.jpcc.6b10412

    Article  Google Scholar 

  78. B. Cheng, Y. Wang, D. Barbalas, T. Higo, S. Nakatsuji, N.P. Armitage, Terahertz conductivity of the magnetic Weyl semimetal Mn3Sn films. Appl. Phys. Lett. 115(1), 12405 (2019). https://doi.org/10.1063/1.5093414

    Article  ADS  Google Scholar 

  79. X. Zou, J. Luo, D. Lee, C. Cheng, D. Springer, S.K. Nair, S.A. Cheong, H.J. Fan, E.E.M. Chia, Temperature-dependent terahertz conductivity of tin oxide nanowire films. J. Phys. D 45(46), 465101 (2012). https://doi.org/10.1088/0022-3727/45/46/465101

    Article  ADS  Google Scholar 

  80. C.-S. Yang, C.-M. Chang, P.-H. Chen, P. Yu, C.-L. Pan, Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials. Opt. Express 21(14), 16670–16682 (2013). https://doi.org/10.1364/OE.21.016670

    Article  ADS  Google Scholar 

  81. E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, H.M. Zidan, Ac conductivity and dielectric characteristics of pva/pvp nanocomposite filled with mwcnts. J. Mater. Sci. 30, 15521–15533 (2019). https://doi.org/10.1007/s10854-019-01929-2

    Article  Google Scholar 

  82. C.U. Devi, A.K. Sharma, V.V.R.N. Rao, Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater. Lett. 56(3), 167–174 (2002). https://doi.org/10.1016/S0167-577X(02)00434-2

    Article  Google Scholar 

  83. J. Joo, A.J. Epstein, Electromagnetic radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett. 65(18), 2278–2280 (1994). https://doi.org/10.1063/1.112717

    Article  ADS  Google Scholar 

  84. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45(4), 821–827 (2007)

    Article  Google Scholar 

  85. K. Zeranska-Chudek, A. Siemion, N. Palka, A. Mdarhri, I. Elaboudi, C. Brosseau, M. Zdrojek, Terahertz shielding properties of carbon black based polymer nanocomposites. Materials (2021). https://doi.org/10.3390/ma14040835

    Article  Google Scholar 

  86. Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, Y. Chen, Ultra-broadband wide-angle Terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 28(2), 1704363 (2018). https://doi.org/10.1002/adfm.201704363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work. Material preparation was done by BK, and the data collection was done by SM and NMAK. The analysis was performed by SM and verified by NK. The first draft of the manuscript was written by SM and NK. All authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript and agreed to its contents.

Corresponding author

Correspondence to N. Kamaraju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 140 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Anjan Kumar, N.M., Karthikeyan, B. et al. Investigation of conductivity and shielding efficiency of the free-standing PVA–GO–Ag composite thin films in terahertz regime using time-domain terahertz spectroscopy. Appl. Phys. A 129, 343 (2023). https://doi.org/10.1007/s00339-023-06603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06603-3

Keywords

Navigation