Skip to main content
Log in

Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe3O4-reduced graphene oxide-polyaniline (Fe3O4–RGO–PANI) ternary electromagnetic wave absorbing materials were prepared by in situ polymerization of aniline monomer on the surface of Fe3O4–RGO nanocomposites. The morphology, structure and other physical properties of the nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, vibration sample magnetism, etc. The electromagnetic wave absorbing properties of composite materials were measured by using a vector network analyzer. The PANI–Fe3O4–RGO nanocomposites demonstrated that the maximum reflection loss was −36.5 dB at 7.4 GHz with a thickness of 4.5 mm and the absorption bandwidth with the reflection loss below −10 dB was up to 12.0 GHz with a thickness in the range of 2.5–5.0 mm, suggesting that the microwave absorption properties and the absorption bandwidth were greatly enhanced by coating with polyaniline (PANI). The strong absorption characteristics of PANI–Fe3O4–RGO ternary composites indicated their potential application as the electromagnetic wave absorbing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, C.W. Hu, Chem. Mater. 23, 1587–1593 (2011)

    Article  Google Scholar 

  2. W.M. Zhu, L. Wang, R. Zhao, J.W. Ren, G.Z. Lu, Y.Q. Wang, Nanoscale 3, 2862–2864 (2011)

    Article  Google Scholar 

  3. H.B. Zhang, Q. Yan, W.G. Zheng, Z.X. He, Z.Z. Yu, ACS Appl. Mater. Interfaces 3, 918–924 (2011)

    Article  Google Scholar 

  4. Z.P. Wu, M.M. Li, Y.Y. Hu, Y.S. Li, Z.X. Wang, Y.H. Yin et al., Scr. Mater. 64, 809–812 (2011)

    Article  Google Scholar 

  5. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, J. Phys. Chem. C 114, 16229–16235 (2010)

    Article  Google Scholar 

  6. H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, X.Y. Tian, J Mater. Chem. A 1, 8547–8552 (2013)

    Article  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 306, 666–669 (2004)

    Article  Google Scholar 

  8. Y.J. Chen, Y. Li, M.C. Yip, N.W. Tai, Comp. Sci. Tech. 80, 80–86 (2013)

    Article  Google Scholar 

  9. P.B. Liu, Y. Huang, L. Wang, W. Zhang, Syn. Metals 177, 89–93 (2013)

    Article  Google Scholar 

  10. M. Zong, Y. Huang, Y. Zhao, L. Wang, P.B. Liu, Y. Wang et al., Mater. Lett. 106, 22–25 (2013)

    Article  Google Scholar 

  11. M. Zong, Y. Huang, H.W. Wu, Y. Zhao, Q.F. Wang, X. Sun, Mater. Lett. 114, 52–55 (2014)

    Article  Google Scholar 

  12. M. Zong, Y. Huang, H.W. Wu, Y. Zhao, S.Q. Wang, N. Zhang et al., Mater. Lett. 111, 188–191 (2013)

    Article  Google Scholar 

  13. P. Bhattacharya, C.K. Das, J. Mater. Sci.: Mater. Electron. 24, 1927–1936 (2013)

    Google Scholar 

  14. D.P. Sun, Q. Zou, G.Q. Qian, C. Sun, W. Jiang, F.S. Li, Acta Mater. 61, 5829–5834 (2013)

    Article  Google Scholar 

  15. W.D. Xue, R. Zhao, X. Du, F.W. Xu, M. Xu, K.X. Wei, Mater. Res. Bull. 50, 285–291 (2014)

    Article  Google Scholar 

  16. Y.J. Chen, Z.Y. Lei, H.Y. Wu, C.L. Zhu, P. Gao, Q.Y. Ouyang et al., Mater. Res. Bull. 48, 3362–3366 (2013)

    Article  Google Scholar 

  17. C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du, S.R. Hu et al., Appl. Phys. Lett. 98, 072906 (2011)

    Article  Google Scholar 

  18. X. Bai, Y.H. Zhai, Y. Zhang, J. Phys. Chem. C 115, 11673–11677 (2011)

    Article  Google Scholar 

  19. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera et al., Carbon 50, 2202–2208 (2012)

    Article  Google Scholar 

  20. M. Fu, Q.Z. Jiao, Y. Zhao, Mater. Charact. 86, 303–315 (2013)

    Article  Google Scholar 

  21. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J.H. Jang et al., Nanoscale 5, 2411–2420 (2013)

    Article  Google Scholar 

  22. A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K. Dhawan, J. Mater. Chem. A 2, 3581–3593 (2014)

    Article  Google Scholar 

  23. X. Sun, J.P. He, G.X. Li, J. Tang, T. Wang, Y.X. Guo et al., J. Mater. Chem. C 4, 765–777 (2013)

    Article  Google Scholar 

  24. H.L. Xu, H. Bi, R.B. Yang, J. Appl. Phys. 111, 07A522 (2012)

    Google Scholar 

  25. E.L. Ma, J.J. Li, N.Q. Zhao, E.Z. Liu, C.N. He, C.S. Shi, Mater. Lett. 91, 209–212 (2013)

    Article  Google Scholar 

  26. L.C. Li, C. Xiang, X.X. Liang, B. Hao, Syn. Metals 160, 28–34 (2010)

    Article  Google Scholar 

  27. S.H. Hosseini, A. Asadnia, H. Kerdari, J. Alloys Comp. 509, 4682–4687 (2011)

    Article  Google Scholar 

  28. Z.H. He, Y. Fang, X.J. Wang, H. Pang, Syn. Metals 161, 420–425 (2011)

    Article  Google Scholar 

  29. A. Tadjarodi, H. Kerdari, M. Imani, J. Alloys Comp. 554, 284–292 (2013)

    Article  Google Scholar 

  30. M. Faisal, S. Khasim, J. Mater. Sci.: Mater. Electron. 24, 2202–2210 (2013)

    Google Scholar 

  31. Y. Wang, Y. Huang, Q.F. Wang, Q. He, L. Chen, Appl. Surf. Sci. 259, 486–493 (2012)

    Google Scholar 

  32. B. Belaabed, J.L. Wojkiewicz, S. Lamouri, N. El Kamchi, T. Lasri, J. Alloys Comp. 527, 137–144 (2012)

    Article  Google Scholar 

  33. L.D. Wang, H.J. Wu, Z.Y. Shen, S.L. Guo, Y.M. Wang, Mater. Sci. Eng. B 177, 1649–1654 (2012)

    Article  Google Scholar 

  34. D.G. Li, C. Chen, W. Rao, W.H. Lu, Y.H. Xiong, J. Mater. Sci.: Mater. Electron 25, 76–81 (2014)

    Google Scholar 

  35. K. Cui, Y.L. Cheng, J.M. Dai, J.P. Liu, Mater. Chem. Phys. 138, 810–816 (2013)

    Google Scholar 

  36. X.M. Wu, S.H. Qi, G.C. Duan, Syn. Metals 162, 1609–1614 (2012)

    Article  Google Scholar 

  37. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  38. L.Y. Wang, Y. Sun, J. Wang, A.M. Yu, H.Q. Zhang, D.Q. Song, Colloids Surf. B: Biointerfaces 84, 484–490 (2011)

    Article  Google Scholar 

  39. H. Wei, W.S. Yang, Q. Xi, X. Chen, Mater. Lett. 82, 224–226 (2012)

    Article  Google Scholar 

  40. G. Goncalves, P.A. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio, Chem. Mater. 21, 4796–4802 (2009)

    Article  Google Scholar 

  41. J. Yan, T. Wei, B. Shao, Z.J. Fan, W.Z. Qian, M.L. Zhang et al., Carbon 48, 487–493 (2010)

    Article  Google Scholar 

  42. J.H. Zhou, J.P. He, G.X. Li, T. Wang, D. Sun, X.C. Ding et al., J. Phys. Chem. C 114, 7611–7617 (2010)

    Article  Google Scholar 

  43. P. Xu, X.J. Han, C. Wang, D.H. Zhou, Z.S. Lv, A.H. Wen et al., J Phys. Chem. B 112, 10443–10448 (2008)

    Google Scholar 

  44. Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao et al., J. Appl. Phys. 106, 054303 (2009)

    Article  Google Scholar 

  45. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401–405 (2004)

    Article  Google Scholar 

  46. Y.J. Chen, G. Xiao, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y. Ma et al., J. Phys. Chem. C 115, 13603–13608 (2011)

    Article  Google Scholar 

  47. G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao et al., ACS Nano 6, 11009–11017 (2012)

    Google Scholar 

  48. J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Q.S. Wu et al., Small 8, 1214–1221 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Funding Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National High Technology Research and Development Program of China (863 Program: 2013AA041105), the National Natural Science Foundation of China (11372133), and the Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ13-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Chen or Jinhao Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Qiu, J., Zhu, K. et al. Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites. J Mater Sci: Mater Electron 25, 3664–3673 (2014). https://doi.org/10.1007/s10854-014-2073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2073-1

Keywords

Navigation