Skip to main content
Log in

Flexible reduced graphene oxide paper with excellent electromagnetic interference shielding for terahertz wave

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible and lightweight shielding materials recently have attracted increasing attention for terahertz wave due to the deteriorated performance of electronic equipment interferenced by electromagnetic yielding. Herein, flexible reduced graphene oxide (rGO) papers were prepared by solution evaporation method to attenuate the electromagnetic wave in terahertz field. They exhibited excellent electrical conductivity and remarkable electromagnetic interference shielding effectiveness. The electrical conductivity of the rGO papers was improved from 54.07 to 78.67 S/cm after annealing at 400 °C. The rGO paper annealed at 400 °C was only ~ 370 µm in thickness and particularly exhibited an outstanding absorption performance of 17.6 dB at 0.7 THz. It has been found that the maximum absorption performance of rGO papers was basically equivalent to that of the metamaterials. Moreover, electromagnetic interference shielding effectiveness of 72.1 dB of the rGO papers was obtained at 0.6 THz, which indicated that ~ 99.99% of the power was shielded. Thus, the flexible rGO papers maybe a promising candidate for optimized electromagnetic shielding materials in the terahertz band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang et al., Adv. Funct. Mater. 28, 1704363 (2017)

    Article  Google Scholar 

  2. M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K Żerańska-Chudek et al., Nanoscale (2018). https://doi.org/10.1039/c8nr02793e

    Article  Google Scholar 

  3. F. Shahzad, P. Kumar, Y.H. Kim, S.M. Hong, C.M. Koo, ACS Appl. Mater. Interfaces 8, 9361–9369 (2016)

    Article  CAS  Google Scholar 

  4. F. Sharif, M. Arjmand, A.A. Moud et al., ACS Appl. Mater. Interfaces 9, 14171–14179 (2017)

    Article  CAS  Google Scholar 

  5. N. Zhang, Y. Huang, M. Wang, Composites Part B 136, 135–142 (2018)

    Article  CAS  Google Scholar 

  6. N. Zhang, Y. Huang, M. Zong et al., Chem. Eng. J. 308, 214–221 (2017)

    Article  CAS  Google Scholar 

  7. S. Liu, H. Chen, T.J. Cui, Appl. Phys. Lett. 106, 151601 (2015)

    Article  Google Scholar 

  8. Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Carbon 122, 74–81 (2017)

    Article  CAS  Google Scholar 

  9. S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, Y. Ma, Appl. Phys. Lett. 107, 073903 (2015)

    Article  Google Scholar 

  10. Z. Wang, B. Mao, Q. Wang, J. Yu et al., Small 14, 1704332 (2018)

    Article  Google Scholar 

  11. I. Karteri, M. Altun, M. Gunes, J. Mater. Sci.: Mater. Electron. 28, 6704–6711 (2017)

    CAS  Google Scholar 

  12. L. Liu, A. Das, C.M. Megaridis, Carbon 69, 1–16 (2014)

    Article  Google Scholar 

  13. P. Liu, J. Yan, X. Gao, Y. Huang, Y. Zhang, Electrochim. Acta 272, 77–87 (2018)

    Article  CAS  Google Scholar 

  14. A.A. Eddib, D.D.L. Chung, Carbon 117, 427–436 (2017)

    Article  CAS  Google Scholar 

  15. A. Joshi, A. Bajaj, R. Singh, P.S. Alegaonkar, K. Balasubramanian, S. Datar, Nanotechnology 24, 455705 (2013)

    Article  Google Scholar 

  16. Z. Zeng, C. Wang, Y. Zhang, P. Wang et al., ACS Appl. Mater. Interfaces 10, 8205–8213 (2018)

    Article  CAS  Google Scholar 

  17. A. Popelka, P.N. Khanam, M.A. AlMaadeed, J. Phys. D 51, 105302 (2018)

    Article  Google Scholar 

  18. X. Zhao, W. Gao, W. Yao, Y. Jiang, Z. Xu, C. Gao, ACS Nano 11, 9663–9670 (2017)

    Article  CAS  Google Scholar 

  19. S. Kar, S. Jayanthi, E. Freysz, A.K. Sood, Carbon 80, 762–770 (2014)

    Article  CAS  Google Scholar 

  20. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao et al., Nat. Nanotechnol. 6, 630–634 (2011)

    Article  CAS  Google Scholar 

  21. Y. Zhou, Y. E, Z. Ren, H. Fan, X. Xu, X. Zheng, D. Lei, W. Li, L. Wang, J. Bai, J. Mater. Chem. C 3, 2548–2556 (2015)

    Article  CAS  Google Scholar 

  22. B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, H.G. Xing, Nat. Commun. 3, 780 (2012)

    Article  Google Scholar 

  23. W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao, M.S. Cao, J. Mater. Chem. A 3, 2097–2107 (2015)

    Article  CAS  Google Scholar 

  24. L. Jiang, X. Lu, X. Zheng, J. Mater. Sci.: Mater. Electron. 25, 174–180 (2014)

    CAS  Google Scholar 

  25. L. Jiang, X. Lu, J. Xu, Y. Chen, G.J. Wan, Y. Ding, J. Mater. Sci.: Mater. Electron. 26, 747–754 (2015)

    CAS  Google Scholar 

  26. C.M. Chen, J.Q. Huang, Q. Zhang et al., Carbon 50, 659–667 (2012)

    Article  CAS  Google Scholar 

  27. B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng, Carbon 102, 154–160 (2016)

    Article  CAS  Google Scholar 

  28. F. Shahzad, P. Kumar, S. Yu, S. Lee, Y. Kim, S.M. Hong, C.M. Koo, J. Mater. Chem. C 3, 9802–9810 (2015)

    Article  CAS  Google Scholar 

  29. H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20, 3557–3561 (2010)

    Article  Google Scholar 

  30. L. Dong, J. Yang, M. Chhowalla, K.P. Loh, Chem. Soc. Rev. 46, 7306–7316 (2017)

    Article  CAS  Google Scholar 

  31. Z. Wang, R. Wei, X. Liu, ACS Appl. Mater. Interfaces 9, 22408–22419 (2017)

    Article  CAS  Google Scholar 

  32. S. He, T. Chen, IEEE Trans. Terahertz. Sci. Technol. 3, 757–763 (2013)

    Article  CAS  Google Scholar 

  33. H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W.J. Padilla, R.D. Averitt, Phys. Rev. B 78, 241103 (2008)

    Article  Google Scholar 

  34. Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, S. Zhuang, Opt. Express 23, 2032 (2015)

    Article  CAS  Google Scholar 

  35. S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, T. Cui, J. Appl. Phys. 118, 245304 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants 61771327), NSAF (No. U1730138) and the Science and Technology Innovation Team of Sichuan Province (Grant 2015TD0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanxia Huang or Lili Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Shi, Q., Huang, W. et al. Flexible reduced graphene oxide paper with excellent electromagnetic interference shielding for terahertz wave. J Mater Sci: Mater Electron 29, 17245–17253 (2018). https://doi.org/10.1007/s10854-018-9818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9818-1

Navigation