Skip to main content
Log in

Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The potential effectiveness of high-k spacer for the enhanced analog performance of doping-less dual material double-gate (DL-DMDG) junctionless transistor (JLT) is proposed. The impact of gate stacked (GS = SiO2 + high-k) architecture on DL-DMDG is also demonstrated. The charge plasma technique is used to form n + source/drain in an intrinsic silicon film by proper selection of source/drain electrode work function. The analog parameters are analyzed for DL-DMDG JLT with high-k spacer (DL-DMDG-HK) and gate stacked architecture of DL-DMDG-HK (DL-GSDMDG-HK). The results are compared with DL-DMDG JLT and its gate stacked architecture (DL-GSDMDG) JLT. The DL-DMDG-HK JLT shows improved electrostatic integrity with enhanced on-state current, transconductance (g m), early voltage (V EA) and intrinsic gain (A V ) as compared to DL-DMDG and DL-GSDMDG-JLTs. Moreover, DL-GSDMDG-HK further enhances these figures of merits (FOMs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, J.P. Colinge, Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)

    Article  ADS  Google Scholar 

  2. C.-H. Tai, J.-T. Lin, Y.-C. Eng, P.-H. Lin:A novel high-performance junctionless vertical MOSFET produced on bulk-Si wafer, in Proceedings of the 10th IEEE ICSICT, 2010, pp. 108–110

  3. S. Gundapaneni, S. Ganguly, A. Kottantharayil, Enhanced electrostatic integrity of short-channel junctionless transistor with high-k spacers. IEEE Electron Device Lett. 32(10), 620–625 (2011)

    Article  Google Scholar 

  4. J.P. Colinge, C.W. Lee, R. Yan, I. Ferain, R. Yu, N.D. Akhavan, P. Razavi, Nanowire transistor without junction. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  ADS  Google Scholar 

  5. J.P. Colinge, A. Kranti, R. Yan, C.W. Lee, I. Ferain, R. Yu, N.D. Akhavan, P. Razavi, Junctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011)

    Article  ADS  Google Scholar 

  6. S.-J. Choi, D-Il Moon, S. Kim, J.P. Duarte, Y.-K. Choi, Sensitivity of threshold voltage to nanowire width variation in junctionless transistor. IEEE Electron Device Lett. 32(2), 125–127 (2011)

    Article  ADS  Google Scholar 

  7. M. Aldegunde, A. Martinez, J.R. Barker, Study of discrete doping induced variability in junctionless nanowire MOSFETs using dissipative quantum transport simulations. IEEE Electron Device Lett. 33(2), 194–196 (2012)

    Article  ADS  Google Scholar 

  8. A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani, Analysis of threshold voltage variability due to random dopant fluctuation in junctionless FETs. IEEE Electron Device Lett. 33(3), 336–338 (2012)

    Article  ADS  Google Scholar 

  9. C.-W. Lee, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, J.-P. Colinge, Performance estimation of junctionless multigate transistors. Solid State Electron. 54, 97–103 (2009)

    Article  ADS  Google Scholar 

  10. R.T. Doria, R.D. Trevisoli, M. de Souza, M.A. Pavanello, Impact of the series resistance in the I–V characteristics of junctionless nanowire transistors and its dependence on the temperature. J. Integr. Circuits Syst. 7(1), 121–129 (2011)

    Google Scholar 

  11. C. Sahu, J. Singh, Charge-plasma based process variation immune junctionless transistor. IEEE Electron Device Lett. 35(3), 411 (2014)

    Article  ADS  Google Scholar 

  12. R.J.E. Hueting, B. Rajasekharan, C. Salm, J. Schmitz, The charge plasma P–N diode. IEEE Electron Device Lett. 29(12), 1367–1368 (2008)

    Article  ADS  Google Scholar 

  13. B. Rajasekharan, R.J.E. Hueting, C. Salm, T. Van Hemert, R.A. Wolters, J. Schmitz, Fabrication and characterization of charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)

    Article  ADS  Google Scholar 

  14. M.J. Kumar, K. Nadda, Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)

    Article  ADS  Google Scholar 

  15. S.A. Loan, F. Bashir, M. Rafat, A.R. Alamoud, S.A. Abbasi, A high performance charge plasma based lateral bipolar transistor on selective buried oxide. Semicond. Sci. Technol. 29(1), 015011 (2013)

    Article  ADS  Google Scholar 

  16. M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)

    Article  ADS  Google Scholar 

  17. W. Long, H. Ou, J.-M. Kuo, K.K. Chin, Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)

    Article  ADS  Google Scholar 

  18. X. Zhou, W. Long, A novel hetro-material gate (HMG) MOSFET for deep-submicron ULSI technology. IEEE Trans. Electron Devices 45(12), 2546–2548 (1998)

    Article  ADS  Google Scholar 

  19. A. Chaudhry, M.J. Jagadesh, Investigation of Novel Attributes of A Fully Depleted Dual-Material Gate SOI MOSFET. IEEE Trans. Electron Devices 51(9), 1463–1467 (2004)

    Article  ADS  Google Scholar 

  20. K. Na, Y. Kim, Silicon complementary metal–oxide–semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033–9036 (2006)

    Article  ADS  Google Scholar 

  21. H. Lou, L. Zhang, Y. Zhu, X. Lin, S. Yang, J. He, M. Chan, A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Devices 59(7), 1829–1836 (2012)

    Article  ADS  Google Scholar 

  22. R.K. Sharma, M. Gupta, R.S. Gupta, TCAD assessment of device design technologies for enhanced performance of nanoscale DG MOSFET. IEEE Trans. Electron Devices 58(9), 2936–2943 (2011)

    Article  ADS  Google Scholar 

  23. Silvaco ATLAS user guide, Santa Clara, CA

  24. S.-H. Lo, D.A. Buchanan, Y. Taur, W. Wang, Quantum mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18(5), 209–211 (1997)

    Article  ADS  Google Scholar 

  25. I.C. Kizilyaili, P.K Roy, F. Baumann, R.Y. Huang, D. Hwang. C. Chacon, R. Irwin, Y. Ma, G. Alers: Stacked gate dielectrics with TaO for future CMOS technologies, in Proceedings of the VLSI Symposium Technology, pp. 216–217, 1998

  26. B. Cheng, M. Cao, R. Rao, A. Inani, P.V. Voorde, W.M. Greene, J.M.C. Stork, Y. Zhiping, P.M. Zeitzoff, J.C.S. Woo, The impact of high-k gate dielectric and metal gate electrodes on sub-100 nm MOSFET’s. IEEE Trans. Electron Devices 46(7), 1537–1542 (1999)

    Article  ADS  Google Scholar 

  27. R.K. Baruah, R.P. Paily, A dual-material gate junctionless transistor with high-k spacer for enhanced analog performance. IEEE Trans. Electron Devices 61(1), 123–128 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Intekhab Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, S.I., Sarin, R.K. Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer. Appl. Phys. A 122, 380 (2016). https://doi.org/10.1007/s00339-016-9904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9904-2

Keywords

Navigation