Skip to main content
Log in

Investigation of Gate Material Engineering in Junctionless Transistor for Digital and Analog Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, we propose dual material gate with dual-k dielectric gate oxide double gate junctionless transistor ‘DMG-DK-JLT’ for significant enhancement of performance. We showed, using 2D simulation that the proposed DMG-DK-JLT exhibit: 1) suppressed gate induced drain leakage due to band to band tunneling in OFF state (VDS = 1 V, VGS = 0 V) by 5 orders. 2) Impressively high ION/IOFF ratio of ~108. 3) For VGS=VDS = 1 V, DMG-DK-JLT performs better over conventional double gate JLT on various digital and analog performance metrics such as transconductance (Gm, 64% improvement), early voltage (VEA, 107% improvement), intrinsic gain (GmRO, 294% improvement), unity gain cutoff frequency (fT, 48% improvement), output resistance (Ro, 139% improvement), and transconductance-to-drain current ratio (Gm/ID, 218% improvement at VGS = 0.2 V, VDS = 1 V). We also compared its performance on above metrics with other gate material engineered Junctionless transistors. Moreover, we also show these values are further improved several orders by adding high-k gate sidewall spacer to our proposed DMG-DK-JLT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no other associated data related to manuscript. No data is used for the research described in the manuscript.

References

  1. Sahay S, Kumar MJ (2019) Junctionless Field-Effect Transistors: :design, modeling and simulation. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  2. Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher AM, McCarthy B, Murphy R (2010) Nanowire transistors without junctions. Nat Nanotechnol 5(3):225–229. https://doi.org/10.1038/nnano.2010.15

    Article  CAS  Google Scholar 

  3. Doria RT, Pavanello MA, Trevisoli RD, de Souza M, Lee CW, Ferain I, Akhavan ND, Yan R, Razavi P, Yu R, Kranti A, Colinge JP (2011) Junctionless multiple-gate transistors for analog applications. IEEE Trans Electron Devices 58(8):2511–2519. https://doi.org/10.1109/TED.2011.2157826

    Article  CAS  Google Scholar 

  4. Gundapaneni S, Ganguly S, Kottantharayil A (2011) Bulk planar junctionless transistor (BPJLT): an attractive device alternative for scaling. IEEE Electron Device Lett 32(3):261–263. https://doi.org/10.1109/LED.2010.2099204

    Article  CAS  Google Scholar 

  5. Gundapaneni S, Bajaj M, Pandey RK, Murali KVRM, Ganguly S, Kottantharayil A (2012) Effect of band-to-band tunneling on junctionless transistors. IEEE Trans Electron Devices 59(4):1023–1029. https://doi.org/10.1109/TED.2012.2185800

    Article  CAS  Google Scholar 

  6. Fan J, Li M, Xu X, Yang Y, Xuan H, Huang R (2015) Insight into gate-induced drain leakage in silicon nanowire transistors. IEEE Trans Electron Devices 62(1):213–219. https://doi.org/10.1109/TED.2014.2371916

    Article  CAS  Google Scholar 

  7. Kumar MJ, Sahay S (2016) Controlling BTBT-induced parasitic BJT action in Junctionless FETs using a Hybrid Channel. IEEE Trans Electron Devices 63(8):3350–3353. https://doi.org/10.1109/TED.2016.2577050

    Article  CAS  Google Scholar 

  8. Sahay S, Kumar MJ (2016) Insight into lateral band-to-band-tunneling in nanowire Junctionless FETs. IEEE Trans Electron Devices 63(10):4138–4142. https://doi.org/10.1109/TED.2016.2601239

    Article  CAS  Google Scholar 

  9. Sahay S, Kumar MJ (2017) Symmetric operation in an extended Back gate JLFET for scaling to the 5-nm regime considering quantum confinement effects. IEEE Trans Electron Devices 64(1):21–27. https://doi.org/10.1109/TED.2016.2628763

    Article  Google Scholar 

  10. Lou H et al (2012) A junctionless nanowire transistor with a dual-material gate. IEEE Trans Electron Devices 59(7):1829–1836. https://doi.org/10.1109/TED.2012.2192499

    Article  CAS  Google Scholar 

  11. B. Ghosh, P. Mondal, M. W. Akram, P. Bal, and A. K. Salimath, “Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunnelling effects in subthreshold regime,” J Semicond, vol. 35, no. 6, pp. 0–7, 2014, doi: https://doi.org/10.1088/1674-4926/35/6/064001, 064001

  12. Long W, Ou H, Kuo J, Chin KK (1999) Dual-Material Gate ( DMG). Field Effect Transistor 46(5):865–870

    Google Scholar 

  13. “Silvaco Atlas" Ver.5.19.20 (2014) Santa Clara, CA, USA

  14. Hänsch W, Vogelsang T, Kircher R, Orlowski M (1989) Carrier transport near the Si/SiO2 interface of a MOSFET. Solid State Electron 32(10):839–849. https://doi.org/10.1016/0038-1101(89)90060-9

    Article  Google Scholar 

  15. Raushan MA, Alam N, Siddiqui MJ (2019) Electrostatically doped drain junctionless transistor for low-power applications. J Comput Electron 18(3):864–871. https://doi.org/10.1007/s10825-019-01335-1

    Article  CAS  Google Scholar 

  16. Raushan M a, ALAM N, Siddiqui MJ (2020) A new design approach to improve the performance of JAMFETs. IET Circuits Devices Syst. https://doi.org/10.1049/iet-cds.2019.0208

  17. Wei Long Y, William Liu DW (2001) Non uniform gate/dielectric field effect transistor, US 6225669B1

  18. Kumar S, Raj B, Raj B (2020) Dual-material gate-drain overlapped DG-TFET device for low leakage current design. Silicon. https://doi.org/10.1007/s12633-020-00547-6

  19. Baruah RK, Paily RP (2014) A Dual-Material Gate Junctionless Transistor With High- k Spacer for Enhanced Analog Performance, vol. 61, no. 1, pp. 123–128

  20. Trevisoli R, Doria RT, De Souza M, Pavanello MA (2015) Improved analog operation of junctionless nanowire transistors using back bias,” EUROSOI-ULIS 2015–2015 Jt. Int. EUROSOI Work. Int. Conf. Ultim. Integr. Silicon, no. September 2013, pp. 265–268, doi: https://doi.org/10.1109/ULIS.2015.7063824

  21. Gundapaneni S, Ganguly S, Kottantharayil A (2011) Enhanced electrostatic integrity of short-channel junctionless transistor with high-κ spacers. IEEE Electron Device Lett 32(10):1325–1327. https://doi.org/10.1109/LED.2011.2162309

    Article  CAS  Google Scholar 

  22. Amin SI, Sarin RK (2015) Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance. Superlattice Microst 88:582–590. https://doi.org/10.1016/j.spmi.2015.10.017

    Article  CAS  Google Scholar 

  23. Na MH, Nowak EJ, Haensch W The Effective Drive Current in CMOS Inverters, pp 121–124

  24. Sahay S, Kumar MJ (2017) Spacer design guidelines for nanowire FETs from gate-induced drain leakage perspective. IEEE Trans Electron Devices 64(7):3007–3015. https://doi.org/10.1109/TED.2017.2702067

    Article  CAS  Google Scholar 

  25. Saripalli V, Datta S, Narayanan V, Kulkarni JP Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design, Proc. 2011 IEEE/ACM Int. Symp. Nanoscale Archit. NANOARCH 2011, vol. 1, pp. 45–52, 2011, doi: https://doi.org/10.1109/NANOARCH.2011.5941482

  26. S. Strangio et al., “Digital and analog TFET circuits : Design and benchmark,” Solid State Electron, vol. 146, no. April, pp. 50–65, 2018, doi: https://doi.org/10.1016/j.sse.2018.05.003

Download references

Acknowledgments

We are thankful to the reviewers for the valuable suggestion.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors are equally contributed in the manuscript.

Corresponding author

Correspondence to MD Yasir Bashir.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, M.Y., Raushan, M.A., Ahmad, S. et al. Investigation of Gate Material Engineering in Junctionless Transistor for Digital and Analog Applications. Silicon 14, 2851–2862 (2022). https://doi.org/10.1007/s12633-021-01066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01066-8

Keywords

Navigation