Skip to main content

Performance Evaluation of a Novel Si0.6Ge0.4/Ge Doping-Less TFET for Enhanced Low Power Analog/RF Applications

  • Conference paper
  • First Online:
Recent Trends in Electronics and Communication (VCAS 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 777))

Included in the following conference series:

  • 1486 Accesses

Abstract

Doping-less tunnel field effect transistor (DLTFET) based on charged plasma (CP) concept has emerged as an energy-efficient transistor for low-power analog/RF and digital applications. With that in mind, we investigate a Si0.6Ge0.4/Ge heterojunction DLTEFT with a high-κ dielectric (HJ HD DLTFET). In this device, the drain is made up of Si0.6Ge0.4 and source, and the channel is made up of Germanium. Additionally, a high-κ dielectric (TiO2) has been used to suppress off-state current and provide better insulation. Moreover, a comparative analysis is performed between conventional DLTFET and HJ HD DLTFET using the ATLAS device simulator. The simulation results for HJ HD DLTFET offers an improvement in on-state current (~1000 μA/μm), improved ION/IOFF ratio (~1014), and subthreshold swing (~36.14 mV/decade) at 1.5 V of the gate voltage (VG) and 0.3 V of the drain voltage (VD). The distinguishable characteristics demonstrated by HJ HD DLTFET recommends its competence in low-voltage and low-power analog/RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE 98, 2095–2110 (2010). https://doi.org/10.1109/JPROC.2010.2070470

    Article  Google Scholar 

  2. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011). https://doi.org/10.1038/nature10679

    Article  Google Scholar 

  3. A. Seabaugh, Fundamentals and current status of steep-slope tunnel field-effect transistors. Eur. Solid-State Device Res. Conf. 34–35 (2011). https://doi.org/10.1109/ESSDERC.2011.6044238

  4. N. Damrongplasit, S.H. Kim, T.J.K. Liu, Study of random dopant fluctuation induced variability in the raised-ge-source TFET. IEEE Electron Device Lett. 34, 184–186 (2013). https://doi.org/10.1109/LED.2012.2235404

  5. B.R. Raad, K. Nigam, D. Sharma, P.N. Kondekar, Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattices Microstruct 94, 138–146 (2016). https://doi.org/10.1016/j.spmi.2016.04.016

    Article  Google Scholar 

  6. S. Sahoo, S. Dash, G.P. Mishra, Work-function modulated hetero gate charge plasma TFET to enhance the device performance, in Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit, DevIC 2019 (IEEE), pp. 461–464 (2019)

    Google Scholar 

  7. B. Raad, K. Nigam, D. Sharma, P. Kondekar, Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron Lett 52, 770–772 (2016). https://doi.org/10.1049/el.2015.4348

    Article  Google Scholar 

  8. G.D. Das, S. Dash, G.P. Mishra, Impact of hetero-dielectric engineering on the performance of single gate tunnel FET, in 2018 International Conference on Control, Power, Communication and Computing Technologies, ICCPCCT 2018 (IEEE, 2018), pp. 114–117

    Google Scholar 

  9. C. Anghel, P. Chilagani, A. Amara, A. Vladimirescu, Tunnel field effect transistor with increased on current, low-k spacer and high-k dielectric. Appl Phys Lett 96, 122104 (2010). https://doi.org/10.1063/1.3367880

    Article  Google Scholar 

  10. A. Chattopadhyay, A. Mallik, Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor. IEEE Trans. Electron. Devices 58, 677–683 (2011). https://doi.org/10.1109/TED.2010.2101603

    Article  Google Scholar 

  11. Y. Zhao, C. Wu, Q. Huang et al., A novel tunnel FET design through adaptive bandgap engineering with constant sub-threshold slope over 5 decades of current and high ION/IOFF Ratio. IEEE Electron. Device Lett. 38, 540–543 (2017). https://doi.org/10.1109/LED.2017.2679031

    Article  Google Scholar 

  12. M. Haris, S.A. Loan, M. Mainuddin, Dual material gate dopingless InAs TFET for low power applications, in IMPACT 2017 - International Conference on Multimedia, Signal Processing and Communication Technologies (IEEE, 2018), pp. 114–117

    Google Scholar 

  13. B.V. Chandan, S. Dasari, K. Nigam et al., Impact of gate material engineering on ED-TFET for improving DC/analogue-RF/linearity performances. Micro Nano Lett. 13, 1653–1656 (2018). https://doi.org/10.1049/mnl.2018.5131

    Article  Google Scholar 

  14. M.S. Ram, D.B. Abdi, Dopingless tunnel FET with a hetero-material gate: Design and analysis, in 2014 IEEE 2nd International Conference Emerging Electronics Mater to Devices, ICEE 2014 (2014), pp. 2–5. https://doi.org/10.1109/ICEmElec.2014.7151152

  15. N.T.F. Transistor, S. Saurabh, M. Jagadesh Kumar, S. Member, Novel Attributes of a Dual Material Gate 58, 404–410 (2011)

    Google Scholar 

  16. V. Nagavarapu, R. Jhaveri, J.C.S. Woo, The tunnel source (PNPN) n-MOSFET: A novel high performance transistor. IEEE Trans. Electron Devices 55, 1013–1019 (2008). https://doi.org/10.1109/TED.2008.916711

    Article  Google Scholar 

  17. M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron Devices 60, 3285–3290 (2013). https://doi.org/10.1109/TED.2013.2276888

    Article  Google Scholar 

  18. S.H. Kim, S. Agarwal, Z.A. Jacobson et al., Tunnel field effect transistor with raised germanium source. IEEE Electron Device Lett. 31, 1107–1109 (2010). https://doi.org/10.1109/LED.2010.2061214

    Article  Google Scholar 

  19. M. Luisier, G. Klimeck, Atomistic full-band design study of InAs band-to-band tunneling field-effect transistors. IEEE Electron Device Lett. 30, 602–604 (2009). https://doi.org/10.1109/LED.2009.2020442

    Article  Google Scholar 

  20. D.S. Yadav, D. Sharma, A. Kumar et al., Performance investigation of hetero material (InAs/Si)-based charge plasma TFET. Micro Nano Lett. 12, 358–363 (2017). https://doi.org/10.1049/mnl.2016.0688

    Article  Google Scholar 

  21. H.W. Kim, J.H. Kim, S.W. Kim et al., Tunneling field-effect transistor with Si/SiGe material for high current drivability. Jpn. J. Appl. Phys. 53, 4 (2014). https://doi.org/10.7567/JJAP.53.06JE12

    Article  Google Scholar 

  22. S. Sharma, B. Kaur, Performance investigation of asymmetric double-gate doping less tunnel FET with Si/Ge heterojunction. IET Circuits, Devices Syst. 14, 695–701 (2020). https://doi.org/10.1049/iet-cds.2019.0290

    Article  Google Scholar 

  23. K.H. Kao, A.S. Verhulst, W.G. Vandenberghe et al., Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans. Electron Devices 59, 292–301 (2012). https://doi.org/10.1109/TED.2011.2175228

    Article  Google Scholar 

  24. H.K. Sung, H. Kam, C. Hu, T.J.K. Liu, Germanium-source tunnel field effect transistors with record high ION/IOFF. Dig. Tech Pap Symp. VLSI Technol. 178–179 (2009)

    Google Scholar 

  25. K.K. Bhuwalka, J. Schulze, I. Eisele, Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 43, 4073–4078 (2004). https://doi.org/10.1143/JJAP.43.4073

  26. S.-Y. Chung, Si/SiGe heterostructures: Materials, physics, quantum functional devices and their integration with heterostructure bipolar transistors (2005)

    Google Scholar 

  27. C. Anghel, P. Chilagani, A. Amara, A. Vladimirescu, Tunnel field effect transistor with increased on current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96, 4–7 (2010). https://doi.org/10.1063/1.3367880

    Article  Google Scholar 

  28. B. Ghosh, M.W. Akram, Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34, 584–586 (2013). https://doi.org/10.1109/LED.2013.2253752

    Article  Google Scholar 

  29. (2016) ATLAS User’s Manual, Silvaco. Santa Clara, CA, USA

    Google Scholar 

  30. W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952). https://doi.org/10.1103/PhysRev.87.835

    Article  Google Scholar 

  31. K. Nigam, P. Kondekar, D. Sharma, DC characteristics and analog/RF performance of novel polarity control GaAs-Ge based tunnel field effect transistor. Superlattices Microstruct. 92, 224–231 (2016). https://doi.org/10.1016/j.spmi.2016.01.032

    Article  Google Scholar 

  32. S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On enhanced miller capacitance effect in interband tunnel transistors. IEEE Electron. Device Lett. 30, 1102–1104 (2009). https://doi.org/10.1109/LED.2009.2028907

    Article  Google Scholar 

  33. Y. Yang, X. Tong, L.T. Yang et al., Tunneling field-effect transistor: Capacitance components and modeling. IEEE Electron. Device Lett. 31, 752–754 (2010). https://doi.org/10.1109/LED.2010.2047240

    Article  Google Scholar 

  34. P.K. Verma, S.K. Gupta, An improved analog/RF and linearity performances with small-signal parameter extraction of virtually doped recessed source/drain dopingless junctionless transistor for radio-frequency applications. Silicon (2020). https://doi.org/10.1007/s12633-020-00518-x

  35. T. Han, H. Liu, S. Chen et al., A doping-less tunnel field-effect transistor with Si0.6Ge0.4 heterojunction for the improvement of the on–off current ratio and analog/RF performance. Electronics 8, 574 (2019). https://doi.org/10.3390/electronics8050574

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suruchi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, S., Basu, R., Kaur, B. (2022). Performance Evaluation of a Novel Si0.6Ge0.4/Ge Doping-Less TFET for Enhanced Low Power Analog/RF Applications. In: Dhawan, A., Tripathi, V.S., Arya, K.V., Naik, K. (eds) Recent Trends in Electronics and Communication. VCAS 2020. Lecture Notes in Electrical Engineering, vol 777. Springer, Singapore. https://doi.org/10.1007/978-981-16-2761-3_77

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2761-3_77

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2760-6

  • Online ISBN: 978-981-16-2761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics