Skip to main content
Log in

Subwavelength grating waveguides for integrated photonics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Subwavelength waveguide gratings (SWG) are locally periodic structures with parameters that may vary slowly on the scale of a wavelength. Here the implementation of a Lüneburg lens as a SWG to provide Fourier optics on a chip and the design of the adiabatic structures that must be provided to interface SWG structures to conventional waveguides are considered. Preliminary findings are reported on the dispersion engineering of multimode interference couples towards the ideal port phase relations needed in coherent applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Halir et al., Waveguide sub-wavelength structures: a review of principles and applications. Laser Photon. Rev. 9(1), 25–49 (2015)

    Article  Google Scholar 

  2. P.J. Bock, P. Cheben, J.H. Schmid, J. Lapointe, A. Delage, D.X. Xu, S. Janz, A. Densmore, T.J. Hall, Subwavelength grating crossings for silicon wire waveguides. Opt. Express 18(15), 16146–16155 (2010)

    Article  ADS  Google Scholar 

  3. J.H. Hannay, The Clausius–Mossotti equation: an alternative derivation. Eur. J. Phys. 4, 141–143 (1983)

    Article  Google Scholar 

  4. JC Maxwell Garnett, XII Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A 203, 385–420 (1904)

    Article  ADS  MATH  Google Scholar 

  5. S.M. Rytov, Electromagnetic properties of a finely stratified medium. Sov. Phys. JETP 2, 466–475 (1956)

    MATH  Google Scholar 

  6. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  7. D.R. Smith, J.B. Pendry, Homogenization of metamaterials by field averaging (invited paper). J. Opt. Soc. Am. B 23(3), 391–403 (2006)

    Article  ADS  Google Scholar 

  8. V.V. Gozhenko, A.K. Amert, K.W Whites, Homogenization of periodic metamaterials by field averaging over unit cell boundaries: use and limitations, New J. Phys. 15, art. 043030 (2013)

  9. J.S. Pérez-Huerta, G.P. Ortiz, B.S. Mendoza, W.L. Mochán, Macroscopic optical response and photonic bands, New J. Phys. 15, art. 043037 (2013)

  10. W. Mochan, R.G. Barrera, Electromagnetic response of systems with spatial fluctuations. I. General formalism. Phys. Rev. B 32(8), 4984–4988 (1985)

    Article  ADS  Google Scholar 

  11. W.L. Mochan, G.P. Ortiz, B.S. Mendoz, Efficient homogenization procedure for the calculation of optical properties of 3D nanostructured composites. Opt. Express 18(21), 22119–22127 (2010)

    Article  ADS  Google Scholar 

  12. C. Fietz, Y. Urzhumov, G. Shvets, Complex k band diagrams of 3D metamaterial/photonic crystals. Opt. Express 19(20), 19027–19041 (2011)

    Article  ADS  Google Scholar 

  13. H. Nikkhah, T. Hall, Metamaterial Lüneburg lens for Fourier optics on-a-chip, SPIE OPTO. Int. Soc. Opt. Photon. (2014). doi:10.1117/12.2040220

    Google Scholar 

  14. B. Vasic, G. Isic, R. Gajic, K. Hingerl, Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. Opt. Express 18(19), 20321–20333 (2010)

    Article  ADS  Google Scholar 

  15. M. Hasan, R. Guemri, R. Maldonado-Basilio, F. Lucarz, J. de Bougrenet de la Tocnaye, T.J. Hall, Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation. Opt. Lett. 39(24), 6950–6953 (2014)

    Article  ADS  Google Scholar 

  16. M. Hasan, R. Maldonado-Basilio, T.J. Hall, Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, ‘Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators’, Journal of Modern Optics, 58(8), 2011, pp. 665-673. J. Mod. Opt. 62(7), 581–583 (2015)

    Article  ADS  Google Scholar 

  17. R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, T.J. Hall, Electro-optic up-conversion mixer amenable to photonic integration, J. Mod. Opt. 62(17), 1405–1411 (2015)

    Article  ADS  Google Scholar 

  18. M. Hasan, R. Maldonado-Basilio, T.J. Hall, Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation. Opt. Lett. 40, 2501–2504 (2015)

    Article  ADS  Google Scholar 

  19. R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, T. J. Hall, Generalized mach-zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design, Opt. Commun. 354, 122–127 (2015)

    Article  ADS  Google Scholar 

  20. S. Abdul-Majid, I.I. Hasan, P.J. Bock, T.J. Hall, Design, simulation and fabrication of a 90 degrees SOI optical hybrid based on the self-imaging principle. in Photonics Europe 2010, Conference on Silicon Photonics and Photonic Integrated Circuits II, Brussels, Belgium, 12–16 April, Proc SPIE, 7719, 2010, art. 77190E, 2010

Download references

Acknowledgments

The authors are indebted to Tom Davies of Technix for his technical support of the Photon Design suite of software tools used in the work. The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) though an Engage Grant with Technix. Trevor J. Hall is grateful to the Canada Research Chair (CRC) Program for their support of his CRC-I in Photonic Network Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdam Nikkhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikkhah, H., Hall, T.J. Subwavelength grating waveguides for integrated photonics. Appl. Phys. A 122, 368 (2016). https://doi.org/10.1007/s00339-016-9880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9880-6

Keywords

Navigation