Skip to main content
Log in

Enhanced wide-angle third-harmonic generation in flat-band-engineered quasi-BIC metagratings

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Nonlinear metasurfaces and photonic crystals provide a significant way to generate and manipulate nonlinear signals owing to the resonance- and symmetry-based light-matter interactions supported by the artificial structures. However, the nonlinear conversion efficiency is generally limited by the angular dispersion of optical resonances especially in nonparaxial photonics. Here, we propose a metagrating realizing a quasi-bound-state in the continuum in a flat band to dramatically improve the third harmonic generation (THG) efficiency. A superior operating angular range is achieved based on the interlayer and intralayer couplings, which are introduced by breaking the mirror symmetry of the metagrating. We demonstrate the relation of angular dispersion between the nonlinear and linear responses at different incident angles. We also elucidate the mechanism of these off-axis flat-band-based nonlinear conversions through different mode decomposition. Our scheme provides a robust and analytical way for nonparaxial nonlinear generation and paves the way for further applications such as wide-angle nonlinear information transmission and enhanced nonlinear generation under tight focusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tamasaku, E. Shigemasa, Y. Inubushi, I. Inoue, T. Osaka, T. Katayama, M. Yabashi, A. Koide, T. Yokoyama, and T. Ishikawa, Phys. Rev. Lett. 121, 083901 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. T. C. Wei, S. Mokkapati, T. Y. Li, C. H. Lin, G. R. Lin, C. Jagadish, and J. H. He, Adv. Funct. Mater. 28, 1707175 (2018).

    Article  Google Scholar 

  3. Y. Dai, Y. Wang, S. Das, S. Li, H. Xue, A. Mohsen, and Z. Sun, Nano Lett. 21, 6321 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. A. Sabattoli, H. E Dirani, L. Youssef, F. Garrisi, D. Grassani, L. Zatti, C. Petit-Etienne, E. Pargon, J. E. Sipe, M. Liscidini, C. Sciancalepore, D. Bajoni, and M. Galli, Phys. Rev. Lett. 127, 033901 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Z. Hao, W. Liu, Z. Li, Z. Li, G. Geng, Y. Wang, H. Cheng, H. Ahmed, X. Chen, J. Li, J. Tian, and S. Chen, Laser Photon. Rev. 15, 2100207 (2021).

    Article  ADS  Google Scholar 

  6. A. Fedotova, M. Younesi, J. Sautter, A. Vaskin, F. J. F. Löchner, M. Steinert, R. Geiss, T. Pertsch, I. Staude, and F. Setzpfandt, Nano Lett. 20, 8608 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. G. Barbet, B. Qiang, Y. Jin, T. Wu, P. Genevet, Q. Wang, and Y. Luo, Adv. Opt. Mater. 11, 2202786 (2023).

    Article  CAS  Google Scholar 

  8. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys. Rev. A 66, 043813 (2002).

    Article  ADS  Google Scholar 

  9. M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, Phys. Rev. A 88, 033845 (2013).

    Article  ADS  Google Scholar 

  10. Z. Li, W. Liu, D. Ma, S. Yu, H. Cheng, D. Y. Choi, J. G. Tian, and S. Chen, Phys. Rev. Appl. 17, 024008 (2022).

    Article  ADS  CAS  Google Scholar 

  11. W. Liu, Z. Li, M. A. Ansari, H. Cheng, J. Tian, X. Chen, and S. Chen, Adv. Mater. 35, 2208884 (2023).

    Article  CAS  Google Scholar 

  12. D. N. Neshev, and A. E. Miroshnichenko, Nat. Photon. 17, 26 (2023).

    Article  ADS  CAS  Google Scholar 

  13. T. Gu, H. J. Kim, C. R. Baleine, and J. Hu, Nat. Photon. 17, 48 (2023).

    Article  ADS  CAS  Google Scholar 

  14. Y. Zhang, Z. Li, W. Liu, Z. Li, H. Cheng, J. Tian, and S. Chen, Opt. Lett. 46, 3528 (2021).

    Article  ADS  PubMed  Google Scholar 

  15. L. Ni, Z. Wang, C. Peng, and Z. Li, Phys. Rev. B 94, 245148 (2016).

    Article  ADS  Google Scholar 

  16. R. Chai, Q. Liu, W. Liu, Z. Li, H. Cheng, J. Tian, and S. Chen, ACS Photon. 10, 2031 (2023).

    Article  CAS  Google Scholar 

  17. R. Chai, W. Liu, Z. Li, H. Cheng, J. Tian, and S. Chen, Phys. Rev. B 104, 075149 (2021).

    Article  ADS  CAS  Google Scholar 

  18. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, Phys. Rev. Lett. 121, 193903 (2018).

    Article  ADS  PubMed  Google Scholar 

  19. S. Xiao, M. Qin, J. Duan, F. Wu, and T. Liu, Phys. Rev. B 105, 195440 (2022).

    Article  ADS  CAS  Google Scholar 

  20. Z. Zheng, L. Xu, L. Huang, D. Smirnova, P. Hong, C. Ying, and M. Rahmani, Phys. Rev. B 106, 125411 (2022).

    Article  ADS  CAS  Google Scholar 

  21. C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, Science 367, 1018 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. M. S. Hwang, H. C. Lee, K. H. Kim, K. Y. Jeong, S. H. Kwon, K. Koshelev, Y. Kivshar, and H. G. Park, Nat. Commun. 12, 4135 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. X. Zhang, Y. Liu, J. Han, Y. Kivshar, and Q. Song, Science 377, 1215 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. R. Camacho-Morales, L. Xu, H. Zhang, S. T. Ha, L. Krivitsky, A. I. Kuznetsov, M. Rahmani, and D. Neshev, Nano Lett. 22, 6141 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. G. Grinblat, ACS Photon. 8, 3406 (2021).

    Article  CAS  Google Scholar 

  26. T. Liu, M. Qin, F. Wu, and S. Xiao, Phys. Rev. B 107, 075441 (2023).

    Article  ADS  CAS  Google Scholar 

  27. Y. Liang, H. Lin, S. Lin, J. Wu, W. Li, F. Meng, Y. Yang, X. Huang, B. Jia, and Y. Kivshar, Nano Lett. 21, 8917 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. L. Huang, W. Zhang, and X. Zhang, Phys. Rev. Lett. 128, 253901 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. H. S. Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J. L. Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, Phys. Rev. Lett. 120, 066102 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Y. Yang, C. Roques-Carmes, S. E. Kooi, H. Tang, J. Beroz, E. Mazur, I. Kaminer, J. D. Joannopoulos, and M. Soljačić, Nature 613, 42 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, Phys. Rev. X 7, 041056 (2017).

    Google Scholar 

  32. K. Shastri, and F. Monticone, Nat. Photon. 17, 36 (2023).

    Article  ADS  CAS  Google Scholar 

  33. C. Zhou, W. B. Lee, C. S. Park, S. Gao, D. Y. Choi, and S. S. Lee, Adv. Opt. Mater. 8, 2000645 (2020).

    Article  CAS  Google Scholar 

  34. S. G. Lee, S. H. Kim, and C. S. Kee, Phys. Rev. Lett. 126, 013601 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, Phys. Rev. Lett. 113, 037401 (2014).

    Article  ADS  PubMed  Google Scholar 

  36. M. Garcia-Vergara, G. Demésy, and F. Zolla, Opt. Lett. 42, 1145 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, Nat. Mater 14, 379 (2015).

    Article  ADS  PubMed  Google Scholar 

  38. M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, ACS Photon. 3, 1461 (2016).

    Article  CAS  Google Scholar 

  39. S. Kruk, and Y. Kivshar, ACS Photon. 4, 2638 (2017).

    Article  CAS  Google Scholar 

  40. Z. Huang, K. Luo, Z. Feng, Z. Zhang, Y. Li, W. Qiu, H. Guan, Y. Xu, X. Li, and H. Lu, Sci. China-Phys. Mech. Astron. 66, 284211 (2023).

    Article  ADS  Google Scholar 

  41. R. Colom, F. Binkowski, F. Betz, Y. Kivshar, and S. Burger, Phys. Rev. Res. 4, 023189 (2022).

    Article  CAS  Google Scholar 

  42. C. Gigli, T. Wu, G. Marino, A. Borne, G. Leo, and P. Lalanne, ACS Photon. 7, 1197 (2020).

    Article  CAS  Google Scholar 

  43. P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J. P. Hugonin, Laser Photon. Rev. 12, 1700113 (2018).

    Article  ADS  Google Scholar 

  44. Q. Zhou, P. Zhang, and X. W. Chen, Phys. Rev. Lett. 127, 267401 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, Nat. Phys. 12, 1005 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwei Liu, Hua Cheng or Shuqi Chen.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400601, and 2022YFA1404501), the National Natural Science Fund for Distinguished Young Scholar (Grant No. 11925403), and the National Natural Science Foundation of China (Grant Nos. 12122406, 12192253, 12274239, 12274237, and U22A20258).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Y., Chai, R., Liu, W. et al. Enhanced wide-angle third-harmonic generation in flat-band-engineered quasi-BIC metagratings. Sci. China Phys. Mech. Astron. 67, 244212 (2024). https://doi.org/10.1007/s11433-023-2299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2299-9

Navigation