Skip to main content

Advertisement

Log in

Infrared and ultraviolet laser ablation mechanisms of SiO

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mechanisms of SiO ablation have been investigated at laser wavelengths in the infrared, at 10.53 μm, and in the ultraviolet at 248 nm. The energy content of the SiO molecule in the plume and the occurrence of phase transformations in the target, are studied as a function of wavelength and fluence of the ablation laser. At 10.53 μm, in the range of fluences of 0.6–3.0 J cm-2, time distributions of ejected SiO, measured at different distances above the surface target are characteristic of thermal ablation, yielding estimated temperatures of the surface in the range from 1300 to 4800 K. The energy channelled as rotational excitation of ejected SiO, scales with increasing fluence. The time distributions of SiO in the plume, obtained at 248 nm laser ablation, are measured at different distances above the target, yielding velocity and energy distributions that shift towards higher values with distance and show a weak tendency to decrease with increasing laser fluence. Raman analysis of the postablated SiO targets irradiated at 10.53 μm, at fluences above 0.6 J cm-2, shows the formation of Si nanocrystals whose size increases with fluence. Phase transformation is not observed at the shorter laser ablation wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.A. Movtchan, W. Marine, R.W. Dreyfus, H.C. Lee, M. Sentis, M. Autric, Appl. Surf. Sci. 9698, 251 (1996)

    Article  Google Scholar 

  2. R.Q. Zhang, Y. Lifshitz, S.T. Lee, Adv. Mater. 15, 635 (2003)

    Article  Google Scholar 

  3. Y.H. Tang, Y.F. Zhang, N. Wang, W.S. Shi, C.S. Lee, I. Bello, S.T. Lee, J. Vac. Sci. Technol. B 19, 317 (2001)

    Article  Google Scholar 

  4. X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 369, 220 (2003)

    Article  ADS  Google Scholar 

  5. V. Drinek, Z. Bastl, J. Subrt, A. Yabe, J. Pola, J. Mater. Chem. 12, 1800 (2002)

    Article  Google Scholar 

  6. R. Torres, M. Martin, Appl. Surf. Sci. 193, 149 (2002)

    Article  ADS  Google Scholar 

  7. R. Torres, M. Jadraque, M. Martín, Appl. Phys. A 80, 1671 (2005)

    Article  ADS  Google Scholar 

  8. W. Marine, V. Tokarev, M. Gerri, M. Sentis, E. Forgarassy, Thin Solid Films 241, 103 (1994)

    Article  Google Scholar 

  9. H.K. Park, R.F. Haglund Jr., Appl. Phys. A 64, 431 (1997)

    Article  ADS  Google Scholar 

  10. D.R. Ermer, M.R. Papantonakis, M. Baltz-Knorr, D. Nakazawa, R.F. Haglund, Appl. Phys A 70, 633 (2000)

    ADS  Google Scholar 

  11. H.C. Le, R.W. Dreyfus, W. Marine, M. Sentis, I.A. Movtchan, Appl. Surf. Sci. 9698, 164 (1996)

    Article  Google Scholar 

  12. J. Kruger, H. Nino, A. Yabe, Appl. Surf. Sci. 197198, 800 (2002)

    Article  Google Scholar 

  13. J. Hermann, C. Boulmer-Lebrogne, I.N. Mihailescu, B. Dubreuil, J. Appl. Phys 73, 1091 (1993)

    Article  ADS  Google Scholar 

  14. K.L. Saenger, J. Appl. Phys. 68, 4435 (1989)

    Article  ADS  Google Scholar 

  15. R.W. Field, A. Lagerqvist, I. Renhorn, Phys. Scripta 14, 298 (1976)

    Article  ADS  Google Scholar 

  16. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (D. Van Nostrand Company, 1950)

  17. E. Forgarassy, C. Fuchs, A. Slaoui, S. de Unamuno, J.P. Stoquert, W. Marine, S. Lang, J. Appl. Phys. 76, 2612 (1994)

    Article  ADS  Google Scholar 

  18. T.E. Itina, L. Padrone, W. Marine, M. Autric, Appl. Phys. A 69, S59 (1999)

    Article  ADS  Google Scholar 

  19. R.E. Leuchtner, Appl. Surf. Sci. 127129, 626 (1998)

    Article  Google Scholar 

  20. F. Claeyssens, S.J. Henley, M.N.R. Ashfold, J. Appl. Phys. 94, 2203 (2003)

    Article  ADS  Google Scholar 

  21. C.E. Otis, P.M. Goodwin, J. Appl. Phys. 73, 1957 (1993)

    Article  ADS  Google Scholar 

  22. R. Wang, G. Zhou, Y. Liu, S. Pan, H. Zhang, D. Yu, Z. Zhang, Phys Rev. B 61, 16827 (2000)

    Article  ADS  Google Scholar 

  23. J. Liu, J. Niu, D. Yang, M. Yan, J. Sha, Physica E 23, 221 (2004)

    Article  ADS  Google Scholar 

  24. S. Bouldatakis, S. Logothetidis, S. Ves, J. Kircher, J. Appl. Phys. 73, 914 (1993)

    Article  ADS  Google Scholar 

  25. M. Mamiya, H. Takei, M. Kikuchi, C. Uyeda, J. Cryst. Growth 229, 457 (2001)

    Article  Google Scholar 

  26. K.H. New, S.C. Langford, J. T Dickinson, W.P. Hess, J. Appl. Phys. 97, 043501 (2005)

    Article  ADS  Google Scholar 

  27. H.R. Philipp, In: Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, Orlando, 1985)

  28. D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin Heidelberg New York, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Martín.

Additional information

PACS

82.30.Nr; 81.05.Gc; 78.70.-g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, L., Santos, M., Torresano, J. et al. Infrared and ultraviolet laser ablation mechanisms of SiO. Appl. Phys. A 85, 33–37 (2006). https://doi.org/10.1007/s00339-006-3655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3655-4

Keywords

Navigation