Skip to main content
Log in

Patterns of Symbiodinium spp. associations within the family Aiptasiidae, a monophyletic lineage of symbiotic of sea anemones (Cnidaria, Actiniaria)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Although the symbiotic relationships between dinoflagellates and cnidarians are well recognized, few studies have examined these associations from an evolutionary perspective. This is especially true for symbiotic sea anemones, in which many reports consist of an approximate species identification of the host, followed by the identification of the dinoflagellate symbiont using molecular genetic markers. To further explore the evolutionary history of sea anemone–dinoflagellate associations, we documented the diversity of Symbiodinium spp. in a monophyletic clade of sea anemones, the family Aiptasiidae. We combined information from several molecular genetic markers, including nuclear ITS2 and plastid cp23S-rDNA, to evaluate the patterns of evolution and diversification of Symbiodinium in the light of an existing phylogenetic framework for the sea anemone host. At the host family level, we found no evidence for coevolution or reciprocal phylogenies between host and endosymbiont. However, within some individual host species, Symbiodinium spp. exhibited patterns of host specialization and cladogenesis. This pattern suggests that coevolution between host and symbiont occurred within species and genera lineages, but that this process was regularly disrupted and symbiotic partners were recombined during the longer-term evolutionary history of the Aiptasiidae. Furthermore, we observed independent cases of phylogeographical partitioning of Symbiodinium within a single host species, suggesting that ecological speciation along an environmental gradient contributed to the diversity of associations found in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Barbeitos MS, Romano SL, Lasker HR (2010) Repeated loss of coloniality and symbiosis in scleractinian corals. PNAS 107:11877–11882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386

    Article  CAS  Google Scholar 

  • Daly M, Lipscomb DL, Allard MW (2002) A simple test: evaluating explanations for the relative simplicity of the Edwardsiidae (Cnidaria: Anthozoa). Evolution 56:502–510

    Article  PubMed  Google Scholar 

  • Daly M, Chaudhuri A, Gusmão L, Rodríguez E (2008) Phylogenetic relationships among sea anemones (Cnidaria: Anthozoa: Actiniaria). Mol Phylogenet Evol 48:292–301

    Article  CAS  PubMed  Google Scholar 

  • Dunn SR, Bythell JC, Le Tissier MD, Burnett WJ, Thomason JC (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J Exp Mar Biol Ecol 272:29–53

    Article  Google Scholar 

  • Elmhirst R, Sharpe JS (1920) On the colours of two sea anemones, Actinia equina and Anemonia sulcata: part I environmental. Part II. Chemical. Biochem J 14:48–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263

    Article  PubMed  Google Scholar 

  • Gabe M (1968) Technique histologique. Massou et Cie, Paris

    Google Scholar 

  • Gee W (1913) Modifiability in the behavior of the California shore-anemone Cribrina xanthogrammica Brandt. J Anim Behavior 3:305

    Article  Google Scholar 

  • Geller JB, Walton ED (2001) Breaking up and getting together: evolution of symbiosis and cloning by fission in sea anemones (genus Anthopleura). Evolution 55:1781–1794

    Article  CAS  PubMed  Google Scholar 

  • Grajales A, Rodríguez E (2014) Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). Zootaxa 3826:55–100

    Article  PubMed  Google Scholar 

  • Grajales A, Rodríguez E (2015) Elucidating the evolutionary relationships of the Aiptasiidae, a widespread cnidarian-dinoflagellate model system (Cnidaria: Anthozoa: Actiniaria: Metridioidea). Mol Phylogenet Evol. doi:10.1016/j.ympev.2015.09.004

  • Granados-Cifuentes C, Neigel J, Leberg P, Rodriguez-Lanetty M (2015) Genetic diversity of free-living Symbiodinium in the Caribbean: the importance of habitats and seasons. Coral Reefs 34:927–939

    Article  Google Scholar 

  • Gusmão LC, Daly M (2010) Evolution of sea anemones (Cnidaria: Actiniaria: Hormathiidae) symbiotic with hermit crabs. Mol Phylogenet Evol 56:868–877

    Article  PubMed  Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58:700–754

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter RL, LaJeunesse TC, Santos SR (2007) Structure and evolution of the rDNA internal transcribed spacer (ITS) region 2 in the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 43:120–128

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechniques. McGraw-Hill, New York and London

    Google Scholar 

  • Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumla S, Doolgindachbaporn S, Sudmoon R, Sattayasai N (2012) Genetic variation, population structure and identification of yellow catfish, Mystus nemurus (C&V) in Thailand using RAPD, ISSR and SCAR marker. Mol Biol Rep 39:5201–5210

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One 6:e29013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603

    Google Scholar 

  • LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53:305–319

    Article  Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Lopez-Perez A, Bonilla-Reyes H, Warner ME (2010) Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc R Soc Lond B Biol Sci 277:2925–2934

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway computing environments workshop (GCE), 2010, New Orleans LA. IEEE, pp. 1–8

  • Muller-Parker G, Davy SK (2001) Temperate and tropical algal–sea anemone symbioses. Invert Biol 120:104–123

    Article  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Patzner RA (2004) Associations with sea anemones in the Mediterranean Sea: a review. Ophelia 58:1–11

    Article  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Mol Phylogenet Evol 56:492–497

    Article  CAS  PubMed  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  CAS  PubMed  Google Scholar 

  • Pochon X, Putnam HM, Burki F, Gates RD (2012) Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS One 7:e29816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pringle JR (2012) A hope for the reefs. Symbiosis 57:109–110

    Article  Google Scholar 

  • Rodriguez-Lanetty M, Phillips W, Weis V (2006) Transcriptome analysis of a cnidarian–dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics 7:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez E, Barbeitos M, Daly M, Gusmão LC, Häussermann V (2012) Toward a natural classification: phylogeny of acontiate sea anemones (Cnidaria, Anthozoa, Actiniaria). Cladistics 28:375–392

    Article  Google Scholar 

  • Rodríguez E, Barbeitos M, Brugler MR, Crowley L, Gusmão L, Häussermann V, Grajales A, Reft A, Daly M (2014) Hidden among sea anemones: the first comprehensive phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel group of hexacorals. PLoS One 9:e96998

    Article  PubMed Central  PubMed  Google Scholar 

  • Roopin M, Thornhill DJ, Santos SR, Chadwick NE (2011) Ammonia flux, physiological parameters, and Symbiodinium diversity in the anemonefish symbiosis on Red Sea coral reefs. Symbiosis 53:63–74

    Article  CAS  Google Scholar 

  • Santos SR, Taylor DJ, Kinzie Iii RA, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111

    Article  CAS  PubMed  Google Scholar 

  • Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol Prog Ser 244:17–26

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Sunagawa S, Choi J, Forman HJ, Medina M (2008) Hyperthermic stress-induced increase in the expression of glutamate-cysteine ligase and glutathione levels in the symbiotic sea anemone Aiptasia pallida. Comp Biochem Physiol B Biochem Mol Biol 151:133–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, Weis VM, Medina M, Schwarz JA (2009) Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10:258

    Article  PubMed Central  PubMed  Google Scholar 

  • Thornhill DJ, Lord JB (2010) Secondary structure models for the internal transcribed spacer (ITS) region 1 from symbiotic dinoflagellates. Protist 161:434–451

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Santos SR (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 16:5326–5340

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperature biogeography in a western Atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135

    Article  CAS  Google Scholar 

  • Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR (2013) Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol 22:4499–4515

    Article  CAS  PubMed  Google Scholar 

  • Venn AA, Loram JE, Trapido-Rosenthal HG, Joyce DA, Douglas AE (2008) Importance of time and place: patterns in abundance of Symbiodinium clades A and B in the tropical sea anemone Condylactis gigantea. Biol Bull 215:243–252

    Article  CAS  PubMed  Google Scholar 

  • Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Assoc UK 86:1281–1283

    Article  CAS  Google Scholar 

  • Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR (2008) Cell biology in model systems as the key to understanding corals. Trends Ecol Evol 23:369–376

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to colleagues who assisted us with fieldwork or kindly provided samples, particularly to C. Arvanitidis (Hellenic Centre for Marine Research, MRC, Greece), A. Baird (James Cook University, Townsville, Australia), J. Brown (Environment and Natural Resources Directorate St. Helena), J. Campbell (Smithsonian Marine Station at Fort Pierce, USA), R. Collin (Smithsonian Tropical Research Institute, STRI, Panama), V. Cumbo (James Cook University, Townsville, Australia), J. Frommlet (Centro de Estudios do Ambiente e do Mar, CESAM, Portugal), R. González (Universidad Nacional Autónoma de Mexico, UNAM), L. Gusmão (Universidade de São Paulo, Brazil), K. Hiscock (Marine Biological Association Plymouth, U.K.), P.J. López González (Universidad de Sevilla, Spain), P. Manent (Instituto Canario de Ciencias Marinas, Spain), O. Nir (Haifa University, Israel), J. Reimer (Ryukyus University, Okinawa, Japan), M. Takabayashi (University of Hawaii, Hilo), and B. Titus (Ohio State University). P. Wirtz, D.T. Pettay, and M.E. Warner greatly contributed to the identification of the ITS2 genotypes. T.C. LaJeunesse and S.R. Santos provided helpful discussions and feedback that improved the manuscript. The Lerner-Gray Fund for Marine Research (AMNH), a National Science Foundation Doctoral Dissertation Improvement Grant (NSF DEB 1110754 to AG and ER), the Bermuda Institute of Ocean Sciences, and Ohio State University Museum of Biological Diversity Trautman Fund and Operation Wallacea provided partial support for this work. This manuscript represents contribution nos. 134 and 42 from the Auburn University Marine Biology Program and Molette Biology Laboratory for Environmental and Climate Studies, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Grajales.

Additional information

Communicated by Biology Editor Dr. Simon Davy

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grajales, A., Rodríguez, E. & Thornhill, D.J. Patterns of Symbiodinium spp. associations within the family Aiptasiidae, a monophyletic lineage of symbiotic of sea anemones (Cnidaria, Actiniaria). Coral Reefs 35, 345–355 (2016). https://doi.org/10.1007/s00338-015-1352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1352-5

Keywords

Navigation