Skip to main content
Log in

Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This report documents the extent to which coral colonies show fluctuations in their associations with different endosymbiotic dinoflagellates. The genetic identity of Symbiodinium from six coral species [Acropora palmata (Lamarck), A. cervicornis (Lamarck), Siderastrea siderea (Ellis and Solander), Montastrea faveolata (Ellis and Solander), M. annularis (Ellis and Solander), and M. franksi (Gregory)] was examined seasonally over five years (1998 and 2000–2004) in the Bahamas and Florida Keys at shallow (1 to 4 m) fore-reef/patch reef sites and at deeper fore-reef (12–15 m) locations. Symbionts were identified genetically using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the internal transcribed spacer region 2 (ITS2) of ribosomal RNA gene loci. Repetitive sampling from most labeled colonies from the Bahamas and the Florida Keys showed little to no change in their dominant symbiont. In contrast, certain colonies of M. annularis and M. franksi from the Florida Keys exhibited shifts in their associations attributed to recovery from the stresses of the 1997–1998 El Niño southern oscillation (ENSO) event. Over several years, a putatively stress-tolerant clade D type of Symbiodinium was progressively replaced in these colonies by symbionts typically found in M. annularis and M. franksi in Florida and at other Caribbean locations. Greater environmental fluctuations in Florida may explain the observed changes among some of the symbioses. Furthermore, symbiotic associations were more heterogeneous at shallow sites, relative to deep sites. The exposure to greater environmental variability near the surface may explain the higher symbiont diversity found within and between host colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in scleractinian corals of the Caribbean and eastern Pacific. In: Proceedings of the 8th International Coral Reef Symposium 2:1301–1306

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  Google Scholar 

  • Berkelmans R, van Oppen MJH (2004) Flexibility of the coral-algal symbiosis as a mechanism to cope with environmental change: thermal tolerance. In: 10th International Coral Reef Symposium, Okinawa, Japan, 20 (Abstr.)

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326

    Article  Google Scholar 

  • Chang SS, Trench RK (1983) Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Mar Biol 76:219–231

    Article  CAS  Google Scholar 

  • Chen CA, Lam KK, Nakano Y, Tsai WS (2003) A stable association of the stress-tolerant zooxanthellae, Symbiondinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia: Faviidae) in subtropical non-reefal coral communities. Zool Stud 42:540–550

    Google Scholar 

  • Colley NJ, Trench RK (1983) Selectivity in phagocytosis and persistence of symbiotic algae in the scyphistomae stage of the jellyfish Cassiopeia xamachana. Proc R Soc Lond 219:61–82

    Article  CAS  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Dunbar DB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea surface temperatures since 1600 A.D.: the δ18O record of climate variability in Galapagos corals. Paleooceanography 9:291–315

    Article  Google Scholar 

  • Fitt WK (1985) Effect of different strains of the zooxanthellae Symbiodinium microadriaticum on growth and survival of their coelenterate and molluscan hosts. In: Proceedings of the 5th International Coral Reef Congress 6:131–136

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef building corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Gates RD, Hoegh -Guldberg O, McFall-Ngai KY, Muscatine L (1995) Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Nat Acad Sci USA 92:7430–7434

    Article  CAS  Google Scholar 

  • Glynn PW (1991) Coral bleaching in the 1980’s and the possible connections with global warming. Trends Ecol Evol 6:175–179

    Article  CAS  Google Scholar 

  • Goulet T, Coffroth MA (2003) Stability of an octocoral-algal symbiosis over time and space. Mar Ecol Prog Ser 250:117–124

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  CAS  Google Scholar 

  • Hoegh-Guldburg O (1999) Climate change, coral bleaching, and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175

    Article  Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond 271:1757–1763

    Article  CAS  Google Scholar 

  • Kinzie RA 3rd, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200:51–58

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiontic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Trench RK (2000) The biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004a) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603

    Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004b) Differences in relative dominance beween closely related Symbiodinium spp in coral reef host communities across environmental, latitudinal, and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • Lapointe BE, Clarke MW (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15:465–476

    Article  CAS  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  Google Scholar 

  • Loh WK, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107

    Article  Google Scholar 

  • Muscatine L, (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinski Z ed Ecosystems of the world: Coral reefs (vol. 25) Elsevier, Amsterdam, pp 75–87

  • Muscatine L, Porter J (1977) Reef corals: Mutualistic symbioses adapted to nutrient poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Odum HT, Odum EG (1955) Trophic structure and productivity of windward coral reef community on Eniwetok Atoll. Ecol Monogr 25:291–320

    Article  Google Scholar 

  • van Oppen MJH, Palstra FP, Piqueet AM-T, Miller DJ (2001) Patterns of coral-dinflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Lond 268:1759–1767

    Article  Google Scholar 

  • Porter JW, Porter KG (eds) (2002) The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem sourcebook. CRC Press, Boca Raton

    Google Scholar 

  • Porter JW, Tougas JI (2001) Reef ecosystems: threats to their biodiversity. Encyclopedia of biodiversity. Academic, New York, 5:73–95

    Chapter  Google Scholar 

  • Reynolds WS, Schwarz JA, Weis VM (2000) Symbiosis-enhanced gene expression in cnidarian-algal associations: cloning and characterization of a cDNA, sym32, encoding a possible cell adhesion protein. Comp Biochem Physiol 126:33–44

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2001) Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar Biol 138:1175–1181

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Krupp DA, Weis VM (2004) Distinct ITS types of Symbiodinium in Clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Mar Ecol Prog Ser 275:97–102

    Article  CAS  Google Scholar 

  • Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 344:7–17

    Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis. Science 251:1348–1351

    Article  CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  CAS  Google Scholar 

  • Santos SR, Shearer TL, Hannes AR, Coffroth MA (2004) Fine scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium Dinophyceae) of the Carribean. Mol Ecol 13:459–469

    Article  CAS  Google Scholar 

  • Schoenberg DA, Trench RK (1980) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of Symbiodinium microadriaticum. Proc R Soc Lond 207:445–460

    Article  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 60:82–92

    Article  Google Scholar 

  • Szmant AM (1986) Reproductive ecology of Caribbean reef corals. Coral Reefs 5:43–54

    Article  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged ‘bleaching’ on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Tchernov D, Gorbunov MY, deVargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001a) Zooxanthellae of the Montastrea annularis species complex: patterns of distribution of four taxa of Symbiodinium across different reefs and across depths. Biol Bull 201:348–359

    Article  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001b) Repopulation of zooxanthellae in Caribbean corals Montastrea annularis and Montastrea faveolata following experimental and disease induced bleaching. Biol Bull 201:360–373

    Article  CAS  Google Scholar 

  • Trench RK (1993) Microalgal-invertebrate symbiosis: a review. Endo Cell Res 9:135–75

    Google Scholar 

  • Trench RK (1997) Diversity of symbiotic dinoflagellates and the evolution of microalgal-invertebrate symbioses. In: Proceedings of the 8th International Coral Reef Symposium 2:1275–1286

  • Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484

    Article  CAS  Google Scholar 

  • van Oppen (2004) Mode of zooxanthellae transmission does not affect zooxanthella diversity in acroporid corals. Mar Biol 144:1–7

    Article  Google Scholar 

  • Ware JR, Fautin DG, Buddemeier RW (1996) Patterns of coral bleaching: Modeling the adaptive bleaching hypothesis. Ecol Model 84:199–214

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  CAS  Google Scholar 

  • Wellington GM, Glynn PW, Strong AE, Navarrete SA, Wieters E, Hubbard D (2001) Crisis on coral reefs linked to climate change. Eos Trans Am Geophys Union 82:1–5

    Article  Google Scholar 

  • Wood R (1998) The ecology and evolution of reefs. Annu Rev Ecol Syst 25:443–466

    Google Scholar 

Download references

Acknowledgements

This research was funded by NSF (9906976 and 0137007) and the NOAA National Undersea Research Program through both the Caribbean Marine Research Center on Lee Stocking Island in the Bahamas and the Florida Keys Dayboat Program run by the University of North Carolina at Wilmington. An NSF Graduate Research Fellowship to the senior author also supported this work. This project would not have been possible without the help of Geoff Chilcoat, Brian Todd, Mark Warner, Tom Shannon, Cecilia Torres, Jennifer McCabe and Mike Daniel who assisted in sample collection. We would also like to thank Kate Semone and Mike Daniel for their contributions in sample processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Thornhill.

Additional information

Communicated by J.P.Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thornhill, D.J., LaJeunesse, T.C., Kemp, D.W. et al. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Marine Biology 148, 711–722 (2006). https://doi.org/10.1007/s00227-005-0114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0114-2

Keywords

Navigation