Skip to main content
Log in

Averaging Principle for Multiscale Stochastic Klein–Gordon-Heat System

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper investigates multiscale stochastic Klein–Gordon-heat system. We establish the well-posedness and two kinds of stochastic averaging principle for stochastic Klein–Gordon-heat system with two timescales. To be more precise, under suitable conditions, two kinds of averaging principle (the autonomous case and the nonautonomous case) are proved, and as a consequence, the multiscale stochastic Klein–Gordon-heat system can be reduced to a single stochastic Klein–Gordon equation (averaged equation) with a modified coefficient, the slow component of multiscale stochastic system toward the solution of the averaged equation in moment (the autonomous case) and in probability (the nonautonomous case).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bréhier, C.E.: Strong and weak orders in averaging for SPDEs. Stoch. Process. Appl. 122, 2553–2593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Bensoussan, A.: Stochastic Navier–Stokes equations. Acta Appl. Math. 38(3), 267–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles. Bernoulli 23(1), 645–669 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Cerrai, S.: A Khasminkii type averaging principle for stochastic reaction–diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Cerrai, S.: Averaging principle for systems of reaction–diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal. 43(6), 2482–2518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Cerrai, S., Freidlin, M.I.: Averaging principle for a class of stochastic reaction diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Cerrai, S., Lunardi, A.: Averaging principle for nonautonomous slow–fast systems of stochastic reaction–diffusion equations: the almost periodic case. SIAM J. Math. Anal. 49(4), 2843–2884 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Chow, P.L.: Thermoelastic wave propagation in a random medium and some related problems. Int. J. Eng. Sci. 11(9), 953–971 (1973)

    Article  MATH  Google Scholar 

  • Chow, P.L.: Stochastic Partial Differential Equations. CRC Press, Boca Raton (2014)

    Google Scholar 

  • Cardetti, F., Choi, Y.S.: A parabolic–hyperbolic system modelling a moving cell. Electron. J. Differ. Equ. 95, 1–11 (2009)

    MathSciNet  MATH  Google Scholar 

  • Choi, Y., Miller, C.: Global existence of solutions to a coupled parabolic–hyperbolic system with moving boundary. Proc. Am. Math. Soc. 139(9), 3257–3270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  • Dong, Z., Sun, X., Xiao, H., Zhai, J.: Averaging principle for one dimensional stochastic Burgers equation. J. Differ. Equ. 10, 4749–4797 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press Inc, London (1982)

    MATH  Google Scholar 

  • Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Physica D Nonlinear Phenom. 240(14), 1123–1144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, H., Duan, J.: An averaging principle for two-scale stochastic partial differential equations. Stoch. Dyn. 11(02n03), 353–367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, H., Liu, J.: Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations. J. Math. Anal. Appl. 384(1), 70–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, H., Wan, L., Wang, Y., Liu, J.: Strong convergence rate in averaging principle for stochastic FitzHugh–Nagumo system with two time-scales. J. Math. Anal. Appl. 416(2), 609–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, H., Wan, L., Liu, J.: Strong convergence in averaging principle for stochastic hyperbolic–parabolic equations with two time-scales. Stoch. Process. Appl. 125(8), 3255–3279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, H., Wan, L., Liu, J., et al.: Weak order in averaging principle for stochastic wave equation with a fast oscillation. Stoch. Process. Appl. 128(8), 2557–2580 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Flato, M., Simon, J.C.H., Taflin, E.: Asymptotic completeness, global existence and the infrared problem for the Maxwell–Dirac equations. Mem. Am. Math. Soc. 127, 311 (1997)

    MathSciNet  MATH  Google Scholar 

  • Gao, P.: Global Carleman estimates for linear stochastic Kawahara equation and their applications. Math. Control Signals Syst. 28(3), 21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, P.: Some periodic type solutions for stochastic reaction–diffusion equation with cubic nonlinearities. Comput. Math. Appl. 74(10), 2281–2297 (2017a)

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, P.: The stochastic Swift–Hohenberg equation. Nonlinearity 30, 3516–3559 (2017b)

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, P.: The solutions with recurrence property for stochastic linearly coupled complex cubic-quintic Ginzburg-Landau equations. Stoch. Dyn. (2018a). https://doi.org/10.1142/S0219493719500059

  • Gao, P.: Averaging principle for the higher order nonlinear Schrödinger equation with a random fast oscillation. J. Stat. Phys. 171(5), 897–926 (2018b)

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, P.: Averaging principle for stochastic Kuramoto–Sivashinsky equation with a fast oscillation. Discrete Contin. Dyn. Syst. A 38(11), 5649–5684 (2018c)

    Article  MathSciNet  MATH  Google Scholar 

  • Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. fields 105(2), 143–158 (1996)

    Article  MATH  Google Scholar 

  • Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetika 4, 260–279 (1968). (in Russian)

    Google Scholar 

  • Leung, A.W.: Asymptotically stable invariant manifold for coupled nonlinear parabolic–hyperbolic partial differential equations. J. Differ. Equ. 187(1), 184–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Leung, A.W.: Stable invariant manifolds for coupled Navier–Stokes and second-order wave systems. Asymptot. Anal. 43(4), 339–357 (2005)

    MathSciNet  MATH  Google Scholar 

  • Lisei, H., Keller, D.: A stochastic nonlinear Schrödinger problem in variational formulation. Nonlinear Differ. Equ. Appl. NoDEA 23(2), 1–27 (2016)

    Article  MATH  Google Scholar 

  • Lindblad, H., Rodnianski, I.: The weak null condition for Einsteins equations. C. R. Math. Acad. Sci. Paris 336(11), 901–906 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Muñoz Rivera, J.E., Racke, R.: Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type. SIAM J. Math. Anal. 26(6), 1547–1563 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1985)

    MATH  Google Scholar 

  • Pei, B., Xu, Y., Wu, J.L.: Two-time-scales hyperbolic–parabolic equations driven by Poisson random measures: existence, uniqueness and averaging principles. J. Math. Anal. Appl. 447(1), 243–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, S., Chen, H., Li, W.: The local and global existence of the solutions of hyperbolic–parabolic system modeling biological phenomena. Acta Math. Sci. 28(1), 101–116 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, J.: \(L^{p}\)-strong convergence of the averaging principle for slow–fast SPDEs with jumps. J. Math. Anal. Appl. 445(1), 342–373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, J., Miao, Y., Liu, J.: Strong averaging principle for two-time-scale non-autonomous stochastic FitzHugh–Nagumo system with jumps. J. Math. Phys. 57(9), 092704 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, D., Hou, Z.: Large deviations for the stochastic derivative Ginzburg–Landau equation with multiplicative noise. Physica D Nonlinear Phenom. 237(1), 82–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid–structure interaction. Arch. Ration. Mech. Anal. 184(1), 49 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank the referees and the editor for their careful comments and useful suggestions. I sincerely thank Professor Yong Li for many useful suggestions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Additional information

Communicated by Dr. Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC Grant (11601073).

Appendix

Appendix

1.1 Proof of Proposition 3.1

Proof

Let \(u=\sum \limits _{n=1}^{\infty }u_{n}e_{n},f=\sum \limits _{n=1}^{\infty }f_{n}e_{n},g=\sum \limits _{n=1}^{\infty }g_{n}e_{n}\), then we have

$$\begin{aligned} \left\{ \begin{array}{llll} \mathrm{d}\dot{u}_{n}+\lambda _{n}u_{n}\mathrm{d}t=f_{n}\mathrm{d}t+g_{n}\mathrm{d}W_{1}, \\ u_{n}(0)=(u_{0},e_{n}), \\ \dot{u}_{n}(0)=(u_{1},e_{n}). \end{array} \right. \end{aligned}$$

By applying the Itô formula, we have

$$\begin{aligned} \mathrm{d}(\dot{u}_{n}^{2}+\lambda _{n}u_{n}^{2}) =2\dot{u}_{n}f_{n}\mathrm{d}t+2\dot{u}_{n}g_{n}\mathrm{d}W_{1}+g_{n}^{2}\mathrm{d}t. \end{aligned}$$

Integrating between 0 and t, we have

$$\begin{aligned} \dot{u}_{n}^{2}(t)+\lambda _{n}u_{n}^{2}(t) =\dot{u}_{n}^{2}(0)+\lambda _{n}u_{n}^{2}(0)+\int _{0}^{t}2\dot{u}_{n}f_{n}\mathrm{d}s+\int _{0}^{t}2\dot{u}_{n}g_{n}\mathrm{d}W_{1}+\int _{0}^{t}g_{n}^{2}\mathrm{d}s.\nonumber \\ \end{aligned}$$
(8.1)

Noting the fact that \( \Vert u(\cdot ,t)\Vert =\sum \nolimits _{n=1}^{\infty }u_{n}^{2}(t),~ \Vert u_{t}(\cdot ,t)\Vert =\sum \nolimits _{n=1}^{\infty }\dot{u}_{n}^{2}(t),~ \Vert u_{x}(\cdot ,t)\Vert =\sum \nolimits _{n=1}^{\infty }\lambda _{n}u_{n}^{2}(t) \) and taking the sum on n in formula (8.1), we can prove (3.1).

For any \(\varphi \in C^{\infty }(Q),\varphi (0,t)=\varphi (1,t)=0\), according to \(\mathrm{d}(u_{t}\varphi )=\varphi \mathrm{d}u_{t}+ u_{t} \mathrm{d}\varphi + \mathrm{d}u_{t} \mathrm{d}\varphi =\varphi \mathrm{d}u_{t}+ u_{t} \varphi _{t}\mathrm{d}t\), we have

$$\begin{aligned} \begin{aligned} (u_{t},\varphi )(s)&=(u_{t},\varphi )(0)+\int _{0}^{s}\mathrm{d}(u_{t},\varphi ) \\&=(u_{1},\varphi (0))+\int _{0}^{s}(u_{t},\varphi _{t})\mathrm{d}\tau +\int _{0}^{s}(u_{xx}+f,\varphi )\mathrm{d}\tau +\int _{0}^{s}(g,\varphi )\mathrm{d}W_{1}. \end{aligned} \end{aligned}$$
(8.2)

Since \(\mathrm{d}(u\varphi _{t})=\varphi _{t} \mathrm{d}u+ u \mathrm{d}\varphi _{t}+ \mathrm{d}u \mathrm{d}\varphi _{t}=\varphi _{t} u_{t}\mathrm{d}t+ u \varphi _{tt}\mathrm{d}t\), we have

$$\begin{aligned} \begin{aligned} \int _{0}^{s}(u_{t},\varphi _{t})\mathrm{d}\tau&=\int _{0}^{s}\mathrm{d}(u,\varphi _{t})-\int _{0}^{s}(u, \varphi _{tt})\mathrm{d}\tau \\&=(u,\varphi _{t})(s)-(u_{0},\varphi _{t}(0))-\int _{0}^{s}(u, \varphi _{tt})\mathrm{d}\tau . \end{aligned} \end{aligned}$$
(8.3)

It follows from (8.2) and (8.3) that

$$\begin{aligned} \begin{aligned}&(u_{t},\varphi )(s) \\&\quad =(u_{1},\varphi (0))+(u,\varphi _{t})(s)-(u_{0},\varphi _{t}(0))-\int _{0}^{s}(u, \varphi _{tt})\mathrm{d}\tau \\&\qquad +\int _{0}^{s}(u_{xx}+f,\varphi )\mathrm{d}\tau +\int _{0}^{s}(g,\varphi )\mathrm{d}W_{1} \\&\quad =(u_{1},\varphi (0))-(u_{0},\varphi _{t}(0))+(u,\varphi _{t})(s)+\int _{0}^{s}(u, \varphi _{xx}-\varphi _{tt})\mathrm{d}\tau \\&\qquad +\int _{0}^{s}(f,\varphi )\mathrm{d}\tau +\int _{0}^{s}(g,\varphi )\mathrm{d}W_{1} , \end{aligned} \end{aligned}$$

thus, we can obtain (3.2).

According to (3.2), we have

$$\begin{aligned} \begin{aligned} (u,\varphi )(t)=&\,(u,\varphi )(0)+\int _{0}^{t}(u,\varphi )^{\prime }\mathrm{d}s \\ =&\,(u,\varphi )(0)+\int _{0}^{t}(u,\varphi _{t})\mathrm{d}s+\int _{0}^{t}(u_{t},\varphi )\mathrm{d}s \\ =&\,(u_{0},\varphi (0))+2\int _{0}^{t}(u,\varphi _{t})\mathrm{d}s+t(u_{1},\varphi (0))-t(u_{0},\varphi _{t}(0))\\&+\int _{0}^{t}\int _{0}^{s}(u, \varphi _{xx}-\varphi _{tt})\mathrm{d}\tau \mathrm{d}s \\&+\int _{0}^{t}\int _{0}^{s}(f,\varphi )\mathrm{d}\tau \mathrm{d}s+\int _{0}^{t}\int _{0}^{s}(g,\varphi )\mathrm{d}W_{1}\mathrm{d}s, \end{aligned} \end{aligned}$$

this implies (3.3). \(\square \)

1.2 Proof of Proposition 3.2

Proof

The proof is inspired from Chow (2014, P133, Lemma 3.1, Lemma 3.2), (Gao 2016, Proposition 2.1).

We know that

$$\begin{aligned} u(t)=G^{\prime }(t)u_{0}+G(t)u_{1}+\int _{0}^{t}G(t-s)f(s) \mathrm{d}s+\int _{0}^{t}G(t-s)g\mathrm{d}W_{1} \end{aligned}$$

is the solution of

$$\begin{aligned} \begin{array}{l} \left\{ \begin{array}{llll} \mathrm{d}u_{t}-u_{xx}\mathrm{d}t=f(t)\mathrm{d}t+g(t)\mathrm{d}W_{1} \\ u(0,t)=0=u(1,t) \\ u(x,0)=u_{0}(x) \\ u_{t}(x,0)=u_{1}(x) \end{array} \right. \end{array} \begin{array}{lll} {\mathrm{in}}~Q,\\ {\mathrm{in}}~(0,T),\\ {\mathrm{in}}~I,\\ {\mathrm{in}}~I. \end{array} \end{aligned}$$

1) If we set \(f=0,g=0\), we can know that \(G^{\prime }(t)u_{0}+G(t)u_{1}\) is the solution to

$$\begin{aligned} \begin{array}{l} \left\{ \begin{array}{llll} u_{tt}-u_{xx}=0 \\ u(0,t)=0=u(1,t) \\ u(x,0)=u_{0}(x) \\ u_{t}(x,0)=u_{1}(x) \end{array} \right. \end{array} \begin{array}{lll} {\mathrm{in}}~Q,\\ {\mathrm{in}}~(0,T),\\ {\mathrm{in}}~I,\\ {\mathrm{in}}~I, \end{array} \end{aligned}$$

it follows from (8.1) that

$$\begin{aligned} \dot{u}_{n}^{2}(t)+\lambda _{n}u_{n}^{2}(t) =\dot{u}_{n}^{2}(0)+\lambda _{n}u_{n}^{2}(0), \end{aligned}$$
(8.4)

taking the sum form 1 to \(+\infty \), we have

$$\begin{aligned} \Vert u_{t}(t)\Vert ^{2}+\Vert u_{x}(t)\Vert ^{2} =\Vert u_{t}(0)\Vert ^{2}+\Vert u_{x}(0)\Vert ^{2}, \end{aligned}$$

thus, we have

$$\begin{aligned} \Vert u_{t}(t)\Vert ^{2}+\Vert u(t)\Vert ^{2}_{H^{1}} \le C(\Vert u_{1}\Vert ^{2}+\Vert u_{0}\Vert ^{2}_{H^{1}}). \end{aligned}$$

Multiplying (8.4) by \(\lambda _{n}\), we have

$$\begin{aligned} \lambda _{n}\dot{u}_{n}^{2}(t)+\lambda _{n}^{2}u_{n}^{2}(t) =\lambda _{n}\dot{u}_{n}^{2}(0)+\lambda _{n}^{2}u_{n}^{2}(0), \end{aligned}$$

taking the sum form 1 to \(+\infty \), we have

$$\begin{aligned} \Vert u_{xt}(t)\Vert ^{2}+\Vert u_{xx}(t)\Vert ^{2} =\Vert u_{xt}(0)\Vert ^{2}+\Vert u_{xx}(0)\Vert ^{2}, \end{aligned}$$

thus, it holds that

$$\begin{aligned} \Vert u_{t}(t)\Vert _{H^{1}}^{2}+\Vert u(t)\Vert ^{2}_{H^{2}} \le C(\Vert u_{1}\Vert _{H^{1}}^{2}+\Vert u_{0}\Vert ^{2}_{H^{2}}). \end{aligned}$$

2) If we set \(g=0,u_{0}=0,u_{1}=0\), we can know that \(\int _{0}^{t}G(t-s)f(s)\mathrm{d}s\) is the solution to

$$\begin{aligned} \begin{array}{l} \left\{ \begin{array}{llll} u_{tt}-u_{xx}=f \\ u(0,t)=0=u(1,t) \\ u(x,0)=0 \\ u_{t}(x,0)=0 \end{array} \right. \end{array} \begin{array}{lll} {\mathrm{in}}~Q,\\ {\mathrm{in}}~(0,T),\\ {\mathrm{in}}~I,\\ {\mathrm{in}}~I. \end{array} \end{aligned}$$

It follows from (8.1) that

$$\begin{aligned} \dot{u}_{n}^{2}(t)+\lambda _{n}u_{n}^{2}(t) =\int _{0}^{t}2\dot{u}_{n}f_{n}\mathrm{d}s, \end{aligned}$$

then, it holds that

$$\begin{aligned} \begin{aligned} \sup \limits _{0\le t\le T}(\dot{u}_{n}^{2}(t)+\lambda _{n}u_{n}^{2}(t))&\le \sup \limits _{0\le t\le T}\dot{u}_{n}\cdot \int _{0}^{T}2|f_{n}|\mathrm{d}s \\&\le \frac{1}{2}\sup \limits _{0\le t\le T}\dot{u}_{n}^{2}+C(T)\int _{0}^{T}f_{n}^{2}\mathrm{d}t , \end{aligned} \end{aligned}$$

thus, we have

$$\begin{aligned} \begin{aligned} \sup \limits _{0\le t\le T}(\dot{u}_{n}^{2}(t)+\lambda _{n}u_{n}^{2}(t)) \le C(T)\int _{0}^{T}f_{n}^{2}\mathrm{d}t, \end{aligned} \end{aligned}$$
(8.5)

taking the sum form 1 to \(+\infty \), we have (3.4) with \(m=0\).

If we multiply (8.5) by \(\lambda _{n}\) and take the sum form 1 to \(+\infty \), we have (3.4) with \(m=1\).

3) If we set \(f=0,u_{0}=0,u_{1}=0\), we can know that \(\int _{0}^{t}G(t-s)g(s)\mathrm{d}W_{1}\) is the solution to

$$\begin{aligned} \begin{array}{l} \left\{ \begin{array}{llll} \mathrm{d}u_{t}-u_{xx}\mathrm{d}t=g\mathrm{d}W_{1} \\ u(0,t)=0=u(1,t) \\ u(x,0)=0 \\ u_{t}(x,0)=0 \end{array} \right. \end{array} \begin{array}{lll} {\mathrm{in}}~Q,\\ {\mathrm{in}}~(0,T),\\ {\mathrm{in}}~I,\\ {\mathrm{in}}~I, \end{array} \end{aligned}$$

it follows from (8.1) that

$$\begin{aligned} \dot{u}_{n}^{2}(t)+\lambda _{n}u_{n}^{2}(t) =\int _{0}^{t}2\dot{u}_{n}g_{n}\mathrm{d}W_{1}+\int _{0}^{t}g_{n}^{2}\mathrm{d}s, \end{aligned}$$
(8.6)

taking the sum form 1 to \(+\infty \), we have

$$\begin{aligned} \Vert u_{t}(t)\Vert ^{2}+\Vert u_{x}(t)\Vert ^{2} =2\int _{0}^{t}(u_{t}(s),g(s))\mathrm{d}W_{1}+\int _{0}^{t}\Vert g(s)\Vert ^{2}\mathrm{d}s. \end{aligned}$$

In view of the Burkholder–Davis–Gundy inequality, it holds that

$$\begin{aligned} \begin{aligned} \mathbb {E}\sup \limits _{0\le t\le T}\left| \int _{0}^{t}(u_{t}(s),g(s))\mathrm{d}W_{1}\right| ^{p}&\le C(p)\mathbb {E}\left( \int _{0}^{T}|(u_{t},g)|^{2}\mathrm{d}t\right) ^{\frac{p}{2}} \\&\le C(p)\mathbb {E}\sup \limits _{0\le t\le T}\Vert u_{t}\Vert ^{p} \left( \int _{0}^{T}\Vert g\Vert ^{2}\mathrm{d}t\right) ^{\frac{p}{2}} \\&\le \eta \mathbb {E}\sup \limits _{0\le t\le T} \Vert u_{t}\Vert ^{2p}+C(\eta ,p)\mathbb {E}\left( \int _{0}^{T}\Vert g\Vert ^{2}\mathrm{d}t\right) ^{p}. \end{aligned} \end{aligned}$$

Thus, we can obtain that

$$\begin{aligned}&\mathbb {E}\sup \limits _{0\le t\le T}(\Vert u_{t}(t)\Vert ^{2}+\Vert u_{x}(t)\Vert ^{2})^{p} \\&\quad \le \eta \mathbb {E}\sup \limits _{0\le t\le T} \Vert u_{t}\Vert ^{2p}+C(\eta ,p)\mathbb {E} \left( \int _{0}^{T}\Vert g(t)\Vert ^{2}\mathrm{d}t\right) ^{p} +C(p)\mathbb {E}\left( \int _{0}^{T}\Vert g(t)\Vert ^{2}\mathrm{d}t\right) ^{p}. \end{aligned}$$

If we take \(\eta<<1\), we have (3.5) with \(m=0\).

If we multiply (8.6) by \(\lambda _{n}\) and take the sum form 1 to \(+\infty \), by the above same method as above, we have (3.5) with \(m=1\). \(\square \)

1.3 Proof of Proposition 3.4

Proof

It follows from the factorization formula (see Da Prato and Zabczyk 2014, P130, Theorem 5.10) that

$$\begin{aligned} \int _{0}^{t}S(t-s)f(s)\mathrm{d}W_{2}=\frac{\sin \frac{\pi }{4}}{\pi }\int _{0}^{t}S(t-s)(t-s)^{-\frac{3}{4}}U(s)\mathrm{d}s, \end{aligned}$$

where

$$\begin{aligned} U(s)=\int _{0}^{s}S(s-r)(s-r)^{-\frac{1}{4}}f(r)\mathrm{d}W_{2}. \end{aligned}$$

Thus, we have

$$\begin{aligned} \begin{aligned}&\mathbb {E}\sup _{0\le t\le T}\left\| \int _{0}^{t}S(t-s)f(s)\mathrm{d}W_{2}\right\| _{H^{\beta }}^{2p} \\&\quad \le C\mathbb {E}\sup _{0\le t\le T}\left\| \int _{0}^{t}S(t-s)(t-s)^{-\frac{3}{4}}U(s)\mathrm{d}s\right\| _{H^{\beta }}^{2p} \\&\quad \le C\mathbb {E}\sup _{0\le t\le T} \left( \int _{0}^{t}\Vert S(t-s)(t-s)^{-\frac{3}{4}}U(s)\Vert _{H^{\beta }}\mathrm{d}s\right) ^{2p}. \end{aligned} \end{aligned}$$

Due to Proposition 3.3, it holds that

$$\begin{aligned} \Vert S(t-s)(t-s)^{-\frac{3}{4}}U(s)\Vert _{H^{\beta }}\le C(t-s)^{-\frac{3+\beta }{4}}\Vert U(s)\Vert _{H^{\frac{\beta }{2}}}, \end{aligned}$$

then, we can obtain

$$\begin{aligned} \begin{aligned}&\mathbb {E}\sup _{0\le t\le T}\left\| \int _{0}^{t}S(t-s)f(s)\mathrm{d}W_{2}\right\| _{H^{\beta }}^{2p}\\&\quad \le C\mathbb {E}\sup _{0\le t\le T}\left( \int _{0}^{t}(t-s)^{-\frac{3+\beta }{4}}\Vert U(s)\Vert _{H^{\frac{\beta }{2}}}\mathrm{d}s\right) ^{2p} \\&\quad \le C\mathbb {E}\sup _{0\le t\le T} \left[ \left( \int _{0}^{t}(t-s)^{\left( -\frac{3+\beta }{4}\right) \frac{2p}{2p-1}}\mathrm{d}s\right) ^{2p-1} \left( \int _{0}^{t}\Vert U(s)\Vert _{H^{\frac{\beta }{2}}}^{2p}\mathrm{d}s\right) \right] . \end{aligned} \end{aligned}$$

For any \(p>\frac{2}{1-\beta }\), it holds that

$$\begin{aligned} \left( \int _{0}^{t}(t-s)^{ \left( -\frac{3+\beta }{4}\right) \frac{2p}{2p-1}}\mathrm{d}s\right) ^{2p-1}\le C(p,T), \end{aligned}$$

then, we can obtain that

$$\begin{aligned} \begin{aligned} \mathbb {E}\sup _{0\le t\le T}\left\| \int _{0}^{t}S(t-s)f(s)\mathrm{d}W_{2}\right\| _{H^{\beta }}^{2p}&\le C\mathbb {E}\sup _{0\le t\le T}\left( \int _{0}^{t}\Vert U(s)\Vert _{H^{\frac{\beta }{2}}}^{2p}\mathrm{d}s\right) \\&\le C\mathbb {E}\int _{0}^{T}\Vert U(s)\Vert _{H^{\frac{\beta }{2}}}^{2p}\mathrm{d}s \\&= C\int _{0}^{T}\mathbb {E}\Vert U(s)\Vert _{H^{\frac{\beta }{2}}}^{2p}\mathrm{d}s . \end{aligned} \end{aligned}$$

Due to the Burkholder–Davis–Gundy inequality, it can be deduced that

$$\begin{aligned} \begin{aligned} \mathbb {E}\Vert U(s)\Vert _{H^{\frac{\beta }{2}}}^{2p}&\le C\mathbb {E}\Vert \int _{0}^{s}S(s-r)(s-r)^{-\frac{1}{4}}f(r)\mathrm{d}W_{2}\Vert _{H^{\frac{\beta }{2}}}^{2p} \\&\le C\mathbb {E} \left( \int _{0}^{s}(s-r)^{-\frac{\beta +1}{2}}\Vert f(r)\Vert ^{2}dr\right) ^{p} \\&\le C\mathbb {E}\left( \int _{0}^{s}(s-r)^{ \left( -\frac{\beta +1}{2}\right) \frac{p}{p-1}}dr\right) ^{p-1} \left( \int _{0}^{s}\Vert f(r)\Vert ^{2p}dr\right) \\&\le C\mathbb {E}\int _{0}^{T}\Vert f(t)\Vert ^{2p}\mathrm{d}t. \end{aligned} \end{aligned}$$

Thus, we can obtain (3.7). \(\square \)

1.4 Proof of Proposition 5.2

Proof

1) It follows from the energy method that

$$\begin{aligned} \begin{aligned} \frac{1}{2}\mathbb {E}\Vert B^{A,X}\Vert ^{2}=&\,\frac{1}{2}\mathbb {E}\Vert X\Vert ^{2}-\int _{0}^{t}\mathbb {E}\Vert B^{A,X}_{x}\Vert ^{2}\mathrm{d}s +\int _{0}^{t}\mathbb {E}(B^{A,X},\mathcal {G}(B^{A,X})\\&+g(A,B^{A,X}))\mathrm{d}s +\frac{1}{2}\int _{0}^{t}\mathbb {E}\Vert \sigma _{2}(A,B^{A,X})\Vert ^{2}\mathrm{d}s, \end{aligned} \end{aligned}$$

namely

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}\mathbb {E}\Vert B^{A,X}\Vert ^{2}= & {} -2\mathbb {E}\Vert B^{A,X}_{x}\Vert ^{2}\\&+2\mathbb {E}(B^{A,X},\mathcal {G}(B^{A,X})+g(A,B^{A,X}))+\mathbb {E}\Vert \sigma _{2}(A,B^{A,X})\Vert ^{2}\\&\le -2\mathbb {E}\Vert B^{A,X}_{x}\Vert ^{2}+2\mathbb {E}(B^{A,X},g(A,B^{A,X}))+\mathbb {E}\Vert \sigma _{2}(A,B^{A,X})\Vert ^{2}. \end{aligned}$$

With the help of the Young inequality and choosing a suitable \(\eta \), we can obtain

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}\mathbb {E}\Vert B^{A,X}\Vert ^{2} \le -2\lambda \mathbb {E}\Vert B^{A,X}\Vert ^{2}+3L_{g}\mathbb {E}\Vert B^{A,X}\Vert ^{2}+C\Vert A\Vert ^{2}+C. \end{aligned}$$

Thus, it holds that

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}\mathbb {E}\Vert B^{A,X}\Vert ^{2} \le -\lambda \mathbb {E}\Vert B^{A,X}\Vert ^{2}+C\Vert A\Vert ^{2}+C. \end{aligned}$$

By applying Lemma 3.1 with \(\mathbb {E}\Vert B^{A,X}(t)\Vert ^{2}\), we have

$$\begin{aligned} \mathbb {E}\Vert B^{A,X}(t)\Vert ^{2}\le e^{-\lambda t}\Vert X\Vert ^{2}+C(\Vert A\Vert ^{2}+1). \end{aligned}$$

It follows from the energy method that

$$\begin{aligned}&\mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2}\\&\quad =\Vert X-Y\Vert ^{2}+2\mathbb {E}\int _{0}^{t}(B^{A,X}-B^{A,Y},(B^{A,X}-B^{A,Y})_{xx}\\&\qquad +\,g(A,B^{A,X})-g(A,B^{A,Y}))\mathrm{d}s\\&\qquad +\,2\mathbb {E}\int _{0}^{t}(B^{A,X}-B^{A,Y},\mathcal {G}(B^{A,X})-\mathcal {G}(B^{A,Y}))\mathrm{d}s\\&\qquad +\,\mathbb {E}\int _{0}^{t}\Vert \sigma _{2}(A,B^{A,X})-\sigma _{2}(A,B^{A,Y})\Vert ^{2}\mathrm{d}s, \end{aligned}$$

namely

$$\begin{aligned} \begin{aligned}&\frac{\hbox {d}}{\hbox {d}t}\mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2}\\&\quad =2\mathbb {E}(B^{A,X}-B^{A,Y},(B^{A,X}-B^{A,Y})_{xx}+g(A,B^{A,X})-g(A,B^{A,Y}))\\&\qquad +2\mathbb {E}(B^{A,X}-B^{A,Y},\mathcal {G}(B^{A,X})-\mathcal {G}(B^{A,Y}))+\mathbb {E}\Vert \sigma _{2}(A,B^{A,X})-\sigma _{2}(A,B^{A,Y})\Vert ^{2}\\&\quad \le -2\mathbb {E}\Vert (B^{A,X}-B^{A,Y})_{x}\Vert ^{2}+2L_{g}\mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2}+L_{\sigma _{2}}^{2}\mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2}\\&\quad =(-2\lambda +2L_{g}+L_{\sigma _{2}}^{2})\mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2}, \end{aligned} \end{aligned}$$

here we have used Corollary 3.1.

It follows from (H) that

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}\mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2} \le -\lambda \mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2}, \end{aligned}$$

this yields

$$\begin{aligned} \mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2}\le \Vert X-Y\Vert ^{2}e^{-\lambda t}. \end{aligned}$$

2) (5.2) implies that for any \(A\in L^{2}(I)\), there is a unique invariant measure \(\mu ^{A}\) for the Markov semigroup \(P_{t}^{A}\) associated with system (5.1) in \(L^{2}(I)\) such that

$$\begin{aligned} \int _{L^{2}(I)}P_{t}^{A}\varphi \mathrm{d}\mu ^{A}=\int _{L^{2}(I)}\varphi \mathrm{d}\mu ^{A},~~t\ge 0 \end{aligned}$$

for any \(\varphi \in B_{b}(L^{2}(I))\) the space of bounded functions on \(L^{2}(I)\).

Then, by repeating the standard argument as in Cerrai (2011, Proposition 4.2) and Cerrai and Freidlin (2009, Lemma 3.4), the invariant measure satisfies

$$\begin{aligned} \int _{L^{2}(I)}\Vert z\Vert ^{2}\mu ^{A}(dz)\le C(1+\Vert A\Vert ^{2}). \end{aligned}$$

3) According to the invariant property of \(\mu ^{A}\), 2) and (5.2), we have

$$\begin{aligned} \Vert \mathbb {E}f(A,B^{A,X})-\bar{f}(A)\Vert ^{2}&=\left\| \mathbb {E}f(A,B^{A,X})-\int _{L^{2}(I)}f(A,Y)\mu ^{A}(\mathrm{d}Y)\right\| ^{2}\\&=\left\| \mathbb {E}f(A,B^{A,X})-\mathbb {E}\int _{L^{2}(I)}f(A,B^{A,Y})\mu ^{A}(\mathrm{d}Y)\right\| ^{2}\\&=\left\| \int _{L^{2}(I)}\mathbb {E}[f(A,B^{A,X})-f(A,B^{A,Y})]\mu ^{A}(\mathrm{d}Y)\right\| ^{2}\\&\le C\int _{L^{2}(I)}\mathbb {E}\Vert B^{A,X}-B^{A,Y}\Vert ^{2}\mu ^{A}(\mathrm{d}Y)\\&\le C\int _{L^{2}(I)}\Vert X-Y\Vert ^{2}e^{-\lambda t}\mu ^{A}(\mathrm{d}Y) \\&\le C(1+\Vert X\Vert ^{2}+\Vert A\Vert ^{2})e^{-\lambda t}.\square \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P. Averaging Principle for Multiscale Stochastic Klein–Gordon-Heat System. J Nonlinear Sci 29, 1701–1759 (2019). https://doi.org/10.1007/s00332-019-09529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09529-4

Keywords

Mathematics Subject Classification

Navigation