Skip to main content
Log in

Strong Averaging Principle for Two-Time-Scale Stochastic McKean-Vlasov Equations

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In the paper, an averaging principle problem of stochastic McKean-Vlasov equations with slow and fast time-scale is considered. Firstly, existence and uniqueness of the strong solutions of stochastic McKean-Vlasov equations with two time-scale is proved by using the Picard iteration. Secondly, we show that there exists an exponential convergence to the invariant measure for solutions of the fast equation of stochastic McKean-Vlasov equations with slow and fast time-scale. Finally, strong averaging principle for two-time-scale stochastic McKean-Vlasov equations is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillation. Gordon and Breach Science Publishers Inc, New York (1961)

    Google Scholar 

  2. Mckean, P.H.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Sci. U.S.A. 56(6), 1907–1911 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sznitman, Alain, S.: Topics in propagation of chaos. École d’ Été de Probabilitiés de Saint-Flour XIX-1989, Lecture Notes in Mathematics Vol. 1464. Springer, Berlin (1991)

  4. Chi, H.: Multivalued stochastic McKean-Vlasov equations. Acta Math. Sci. B 34(6), 1731–1740 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Govindan, T.E., Ahmed, N.U.: On Yosida Approximations of McKean-Vlasov type stochastic evolution equations. Stoch. Anal. Appl. 33(3), 383–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, X., Wang, F.: Distribution dependent SDEs with singular coefficients. Stoch. Process. Appl. Article in Press

  7. Huang, X., Liu, C., Wang, F.: Order preservation for path-distribution dependent SDEs. Commun. Pure Appl. Anal. Article in Press

  8. Wang, F.: Distribution dependent SDEs for Landau type equations. Stoch. Process. Appl. 128(2), 595–621 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ren, P., Wang, F.: Bismut formula for Lions derivative of distribution dependent SDEs and applications. J. Differ. Equ. 267(8), 4745–4777 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blankenship, G., Papanicolaou, G.C.: Stability and control of stochastic systems with wide-band noise disturbances. I. SIAM J. Appl. Math. 34(3), 437–476 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hashemi, S.N., Heunis, A.J.: Averaging principle for diffusion processes. Stoch. Stoch. Rep. 62, 201–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear. Mech. 21(2), 111–134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  14. Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence, and Robustness. Englewood Cliffs, Prentice Hall (1989)

    MATH  Google Scholar 

  15. Skorokhod, A.V.: Asymptotic Methods in the Theory of Stochastic Differential Equations Transl.:Translations of Mathematical Monographs, Providence, RI: Amer. Math. Soc., (1989)

  16. Skorokhod, A.V., Hoppensteadt, F.C., Salehi, H.: Random Perturbation Methods With Applications in Science and Engineering. Springer, New York (2002)

    Book  MATH  Google Scholar 

  17. Korolyuk, V.S.: Average and stability of dynamical system with rapid stochastic switching. In: A. V. Skorokhod and Y.V. Borovskikh (Eds.) Exploring Stochastic Laws. Brill Academic Publishers, Boston, MA, pp. 219-232 (1995)

  18. Freidlin, M.I., Wentzell, A.D.: Random Perturbation of Dynamical Systems, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  19. Benveniste, A., Mtivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Springer, New York (1990)

    Book  Google Scholar 

  20. Kushner, H.J., Yin, G.: Stochastic Approximation and Recursive Algorithms and Applications, 2nd edn. Spinger, New York (2003)

    MATH  Google Scholar 

  21. Luo, L., Schuster, E.: Mixing enhancement in 2D magnetohydrodynamic channel flow by extremum seeking boundary control. In: Proc, pp. 10–12. Amer. Control Conf, St. Louis, MO, Jun (2009)

  22. Solo, V., Kong, X.: Adaptive Signal Processing Algorithms: Stability and Performance. Englewood Cliffs, Prentice Hall, NJ (1994)

    MATH  Google Scholar 

  23. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley-Interscience, New York (2003)

    Book  MATH  Google Scholar 

  24. Fuke, Wu, Tian, Tianhai, Rawlings, James B., Yin, George: Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations. J. Chem. Phys. 144(17), 174112 (2016)

    Article  Google Scholar 

  25. Freidlin, M.I., Wentzell, A.D.: Long-time behavior of weakly coupled oscillators. J. Stat. Phys. 123, 1311–1337 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  27. Kushner, H.J.: Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, 3, Systems & Control: Foundations & Applications. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  28. Kifer, Y.: Stochastic versions of Anosov and Neistadt theorems on averaging. Stoch. Dyn. 1(1), 1–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Givon, D., Kevrekidis, I.G.: Multiscale integration schemes for jump-diffusion systems. SIAM J. Multi. Model. Simul. 7, 495–516 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phy. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  31. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122, 014116 (2005)

    Article  Google Scholar 

  32. Vanden-Eijnden, E.: Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1, 377–384 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. E, W., Liu, D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58(1), 1544–1585 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Hartmann, C., Schtte, C., Weber, M., Zhang, W.: Importance sampling in path space for diffusion processes with slow-fast variables. Probab. Theory Relat. Fields 170(1), 177–288 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. SIAM J. Multiscale Model. Simul. 6(2), 577–594 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, J., Liu, J., Miao, Y.: Strong averaging principle for two-time-scale SDEs with non-Lipschitz coefficients. J. Math. Anal. Appl. 468(1), 116–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Golec, J., Ladde, G.: Averaging principle and systems of singularly perturbed stochastic differential equations. J. Math. Phys. 31, 1116–1123 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Golec, J.: Stochastic averaging principle for systems with pathwise uniqueness. Stoch. Anal. Appl. 13(3), 307–322 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Khasminskii, R.Z.: On the principle of averaging the Itô’s stochastic differential equations. Kibernetika. 4, 260–279 (1968). (in Russian)

  40. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  41. Liu, D.: Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun. Math. Sci. 8(4), 999–1020 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, D.: Strong convergence rate of principle of averaging for jump-diffusion processes. Front. Math. China 7(2), 305–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, X.: An averaging principle for a completely integrable stochastic Hamiltonian system. Nonlinearity 21, 803–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nagumo, J.S., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE. 50, 2061–2071 (1962)

    Article  Google Scholar 

  45. Veretennikov, A.Y.: On the Averaging principle for systems of stochastic differential equations. Math. USSR-Sb. 69, 271–284 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Veretennikov, A.Y.: On large deviations in the averaging principle for SDEs with full dependence. Ann. Probab. 27, 284–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wainrib, G.: Double averaging principle of periodically forced slow-fast stochastic systems. Electron. Commun. Probab. 18(51), 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Liu, S., Krstic, M.: Continuous-time stochastic averaging on the infinite interval for locally Lipschitz systems. SIAM J. Control Optim. 48(5), 3589–3622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, S., Krstic, M.: Stochastic averaging in Continuous time and its Applications to Extremum Seeking. IEEE Trans. Autom. Control 55(10), 2235–2250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, S., Krstic, M.: Stochastic averaging in discrete time and its applications to extremum seeking. IEEE Trans. Autom. Control 61(10), 90–102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, L., Han, X., Cao, Y., Najm, H.N.: Computational singular perturbation analysis of stochastic chemical systems with stiffness. J. Comput. Phys. 335, 404–425 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, Z., Yan, L.: Stochastic averaging for two-time-scale stochastic partial differential equations with fractional Brownian motion. Nonlinear Anal. Hybrid Syst. 31, 317–333 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Bihari, I.: A generalization of a lemma of Belmman and its application to uniqueness problem of differential equations. Acta Math. Acad. Sci. Hungar. 7, 71–94 (1956)

    Article  MathSciNet  Google Scholar 

  54. Ding, X., Qiao, H.: Euler-Maruyama approximations for stochastic McKean-Vlasov equations with non-Lipschitz coefficients, arXiv:1903.11754

  55. Xi, F., Zhu, C.: Jump type stochastic differential equations with non-lipschitz coefficients: non confluence, feller and strong feller properties, and exponential ergodicity. J. Differ. Equ. 266(8), 4668–4711 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155–167 (1971)

    MathSciNet  MATH  Google Scholar 

  57. Bossy, M., Talay, D.: A stochastic particle method for the Mckean-Vlasov and the Burgers equation. Math. Comput. 66(217), 157–192 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. Méléard, S.: Asymptotic behaviour of some interacting particle systems, McKean-Vlasovand Boltz-mann models. In: Probabilistic Models for Nonlinear Partial Differential Equations, pp.42–95 (1996)

  59. Bossy, M., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51(4), 2705–2734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Bossy, M., Delarue, F.: Forward-backward stochastic differential equations and controlled McKean- Vlasov dynamics. Ann. Probab. 43(5), 2647–2700 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuni form agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Automat. Control 52(9), 1560–1571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Lasry, J., Lions, P.: Jeux àchamp moyen. I-le cas stationnaire. C.R. Math. 343(9), 619–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Lasry, J., Lions, P.: Jeux àchamp moyen. II-horizon fini et contrôle optimal. C.R. Math. 343(10), 679–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  65. Lasry, J., Lions, P.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is very grateful to Professor Jinqiao Duan for his encouragement and useful discussions. The authors acknowledge the support provided by key scientific research project plans of Henan province advanced universities No.21A110011, and NSFs of China No.11971154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Liu, J., Liu, J. et al. Strong Averaging Principle for Two-Time-Scale Stochastic McKean-Vlasov Equations. Appl Math Optim 84 (Suppl 1), 837–867 (2021). https://doi.org/10.1007/s00245-021-09787-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09787-3

Keywords

Mathematics Subject Classification

Navigation