Skip to main content
Log in

Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction–diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasegawa, A., Kodama, Y.: Higher order pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. 23, 510–524 (1987)

    Article  ADS  Google Scholar 

  2. Kodama, Y.: Optical solitons in a monomode fiber. J. Phys. Stat. 39, 596–614 (1985)

    Article  MathSciNet  Google Scholar 

  3. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  4. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  5. Tian, B., Gao, Y.T.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: new transformation with burstons, brightons and symbolic computation. Phys. Lett. A 359, 241–248 (2006)

    Article  ADS  Google Scholar 

  6. Laurey, C.: Le problme de Cauchy pour une quation de Schrodinger non-linaire de ordre 3. C. R. Acad. Sci. Paris 315, 165–168 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Staffilani, G.: On the generalized Korteweg-de Vries type equations. Differ. Integr. Equ. 10, 777–796 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Bisognin, V., Villagrán, O.P.V.: On the unique continuation property for the higher order nonlinear Schrödinger equation with constant coefficients. Turk. J. Math. 31, 265–302 (2007)

    MATH  Google Scholar 

  9. Carvajal, X., Panthee, M.: Unique continuation property for a higher order nonlinear Schrödinger equation. J. Math. Anal. Appl. 303, 188–207 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceballos, V., Carlos, J., Pavez, F., et al.: Exact boundary controllability for higher order nonlinear Schrödinger equations with constant coefficients. Electron. J. Differ. Equ. 122, 1–31 (2005)

    MATH  Google Scholar 

  11. Simon, H.A., Ando, A.: Aggregation of variables in dynamical systems. Econometrica 29, 111–138 (1961)

    Article  MATH  Google Scholar 

  12. Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetika 4, 260–279 (1968). (in Russian)

    Google Scholar 

  13. Veretennikov, A.Y.: On the averaging principle for systems of stochastic differential equations. Math. USSR-Sb. 69, 271–284 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Veretennikov, A.Y.: On large deviations in the averaging principle for SDEs with full dependence. Ann. Probab. 27, 284–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freidlin, M.I., Wentzell, A.D.: Random Perturbation of Dynamical Systems, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  16. Freidlin, M.I., Wentzell, A.D.: Long-time behavior of weakly coupled oscillators. J. Stat. Phys. 123, 1311–1337 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Golec, J., Ladde, G.: Averaging principle and systems of singularly perturbed stochastic differential equations. J. Math. Phys. 31, 1116–1123 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Givon, D., Kevrekidis, I.G., Kupferman, R.: Strong convergence of projective integration schemes for singular perturbed stochastic differential systems. Commun. Math. Sci. 4, 707–729 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. SIAM J. Multiscale Model. Simul. 6, 577–594 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golec, J.: Stochastic averaging principle for systems with pathwise uniqueness. Stoch. Anal. Appl. 13, 307–322 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cerrai, S., Freidlin, M.I.: Averaging principle for a class of stochastic reaction diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cerrai, S.: A Khasminkii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cerrai, S.: Averaging principle for systems of reaction-diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal. 43, 2482–2518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bréhier, C.E.: Strong and weak orders in averaging for SPDEs. Stoch. Process. Appl. 122, 2553–2593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Fu, H., Liu, J.: Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations. J. Math. Anal. Appl. 384, 70–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fu, H., Wan, L., Liu, J.: Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations with two time-scales. Stoch. Process. Appl. 125, 3255–3279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fu, H., Duan, J.: An averaging principle for two-scale stochastic partial differential equations. Stoch. Dyn. 11, 353–367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J., Miao, Y., Liu, J.: Strong averaging principle for two-time-scale non-autonomous stochastic FitzHugh-Nagumo system with jumps. J. Math. Phys. 57, 092704 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Xu, J.: \(L^{p}\)-strong convergence of the averaging principle for slow-fast SPDEs with jumps. J. Math. Anal. Appl. 445, 342–373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, J., Miao, Y., Liu, J.: Strong averaging principle for slow-fast SPDEs with poisson random measures. Discret. Contin. Dyn. Syst.-Ser. B 20(7), 2233–2256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles. Bernoulli 23, 645–669 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fu, H., Wan, L., Liu, J., et al.: Weak order in averaging principle for stochastic wave equations with a fast oscillation. arXiv preprint arXiv:1701.07984 (2017)

  34. Pei, B., Xu, Y., Wu, J.L.: Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: existence, uniqueness and averaging principles. J. Math. Anal. Appl. 447, 243–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gao, P.: Strong averaging principle for stochastic Klein-Gordon equation with a fast oscillation, arXiv preprint arXiv:1703.05621 (2017)

  36. Gao, P., Li, Y.: Stochastic averaging principle for multiscale stochastic linearly coupled complex cubic-quintic Ginzburg-Landau equations, arXiv preprint arXiv:1703.04085 (2017)

  37. Dong, Z., Sun, X., Xiao, H., et al.: Averaging principle for one dimensional stochastic Burgers equation. arXiv preprint arXiv:1701.05920 (2017)

  38. Fu, H., Wan, L., Wang, Y., et al.: Strong convergence rate in averaging principle for stochastic FitzHugh-Nagumo system with two time-scales. J. Math. Anal. Appl. 416, 609–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, Grundlehren Math. Wiss., Band 181, vol. I. Springer, New York, translated from the French by P. Kenneth (1972)

  40. Rothe, F.: Global Solutions of Reaction-Diffusion Systems. Springer, New York (2006)

    MATH  Google Scholar 

  41. Glass, O., Guerrero, S.: Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60, 61–100 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Chu, J., Coron, J.-M., Shang, P.: Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths. J. Differ. Equ. 259, 4045–4085 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Gao, P.: The stochastic Swift-Hohenberg equation. Nonlinearity 30(9), 3516–3559 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Barton-Smith, M.: Invariant measure for the stochastic Ginzburg Landau equation. Nonlinear Differ. Equ. Appl. NoDEA 11, 29–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I sincerely thank Professor Yong Li for many useful suggestions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Additional information

This work is supported by NSFC Grant (11601073), NSFC Grant (11701078), China Postdoctoral Science Foundation (2017M611292) and the Fundamental Research Funds for the Central Universities (2412017QD002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation. J Stat Phys 171, 897–926 (2018). https://doi.org/10.1007/s10955-018-2048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2048-3

Keywords

Mathematics Subject Classification

Navigation