Skip to main content
Log in

Long-Time Behavior of a Coupled Heat-Wave System Arising in Fluid-Structure Interaction

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to the analysis of the long-time behavior of a coupled wave-heat system in which a wave and a heat equation evolve in two bounded domains, with natural transmission conditions at a common interface. These conditions couple, in particular, the heat unknown with the velocity of the wave solution. This model may be viewed as a simplified version of linearized models which arise in fluid-structure interaction. First, we show the strong asymptotic stability of solutions to this system. Then, based on the construction of ray-like solutions by means of geometric optics expansions and a careful analysis of the transfer of energy at the interface, we show the lack of uniform decay in general domains. Further, we obtain a polynomial decay result for smooth solutions of the system under a suitable geometric assumption which guarantees that the heat domain envelopes the wave domain. Finally, in the absence of geometric conditions we show a logarithmic decay result for the same system but with simplified transmission conditions at the interface. We also analyze the difficulty there is to extend this result to the more natural transmission conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari K., Tucsnak M. (2000). Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Control Optim. 39:1160–1181

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardos C., Lebeau G., Rauch J. (1992). Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30:1024–1065

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga H. (2004). On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6:21–52

    Article  ADS  MathSciNet  Google Scholar 

  4. Blom F.J. (1998). A monolithical fluid-structure interaction algorithm applied to the piston problem. Comput. Methods Appl. Mech. Engrg. 167:369–391

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Boulakia M. (2005). Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid. C. R. Math. Acad. Sci. Paris 340:113–118

    Article  MathSciNet  MATH  Google Scholar 

  6. Burq N. (1997). Contrôlabilité exacte des ondes dans des ouverts peu réguliers. Asymptot. Anal. 14:157–191

    MathSciNet  MATH  Google Scholar 

  7. Causin P., Gerbeau J.F., Nobile F. (2005). Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Engrg. 194:4506–4527

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chambolle A., Desjardins B., Esteban M.J., Grandmont C. (2005). Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7:368–404

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Conca C., San Martín J., Tucsnak M. (2000). Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations. 25:1019–1042

    Article  MathSciNet  MATH  Google Scholar 

  10. Coutand D., Shkoller S. (2005). Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176:25–102

    Article  MathSciNet  MATH  Google Scholar 

  11. Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 3. Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series], Masson, Paris, 1985, With the collaboration of M. Artola, C. Bardos, M. Cessenat, A. Kavenoky, H. Lanchon, P. Lascaux, B. Mercier, O. Pironneau, B. Scheurer and R. Sentis.

  12. Desjardins B., Esteban M.J. (2000). On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differential Equations 25:1399–1413

    MathSciNet  MATH  Google Scholar 

  13. Desjardins B., Esteban M.J., Grandmont C., Le Tallec P. (2001). Weak solutions for a fluid-elastic structure interaction model. Rev. Mat. Complut. 14:523–538

    Article  MathSciNet  MATH  Google Scholar 

  14. Du Q., Gunzburger M.D., Hou L.S., Lee J. (2004). Semidiscrete finite element approximations of a linear fluid-structure interaction problem. SIAM J. Numer. Anal. 42:1–29

    Article  MathSciNet  MATH  Google Scholar 

  15. Duyckaerts, T.: Optimal decay rates of the solutions of hyperbolic-parabolic systems coupled by an interface. Preprint, 2005

  16. Duyckaerts, T.: private communication

  17. Feireisl E. (2003). On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167:281–308

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerbeau J.F., Vidrascu M. (2003). A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. M2AN Math. Model. Numer. Anal. 37:631–647

    Article  MathSciNet  MATH  Google Scholar 

  19. Grandmont C., Maday Y. (2000). Existence for an unsteady fluid-structure interaction problem. M2AN Math. Model. Numer. Anal. 34:609–636

    Article  MathSciNet  MATH  Google Scholar 

  20. Gunzburger M., Lee H.-C., Seregin G.A. (2000). Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2:219–266

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Heil M. (2004). An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg. 193:1–23

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hoffmann K.-H., Starovoitov V. N. (1999). On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9:633–648

    MathSciNet  MATH  Google Scholar 

  23. Hörmander L. (1985). The Analysis of Linear Partial Differential Operators III. Springer, Berlin

    MATH  Google Scholar 

  24. Howe M.S. (1998). Acoustics of Fluid-Structure Interactions. Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  25. Imanuvilov, O.YU., Yamamoto, M.: Remarks on Carleman estimates and exact controllability of the Lamé system. Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2002), Exp. No. V, 19 pp., Univ. Nantes, Nantes, 2002

  26. Ishihara D., Yoshimura S. (2005). A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Internat J. Numer. Methods Engn. 64:167–203

    Article  ADS  MATH  Google Scholar 

  27. le Tallec P., Mani S. (2000). Numerical analysis of a linearised fluid-structure interaction problem. Numer. Math. 87:317–354

    Article  MathSciNet  MATH  Google Scholar 

  28. Lebeau G. (1992). Contrôle analytique I: Estimations a priori. Duke Math. J. 68:1–30

    Article  MathSciNet  MATH  Google Scholar 

  29. Li T.T., Zheng S.M., Tan Y.J., Shen W.X. (1976). Boundary value problems with equivalued surface boundary conditions for self-adjoint elliptic differential equations (I). J. Fudan Univ. Nat. Sci. 1:61–71 (In Chinese)

    Google Scholar 

  30. Lions, J.L.: Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1: Contrôlabilité Exacte, RMA 8, Masson, Paris, 1988

  31. Lions J.L., Magenes E. (1972). Non-Homogeneous Boundary Value Problems and Applications (Vol I). Springer-Verlag, New York

    Book  MATH  Google Scholar 

  32. Macià F., Zuazua E. (2002). On the lack of observability for wave equations: a Gaussian beam approach. Asymptot. Anal. 32:1–26

    MathSciNet  MATH  Google Scholar 

  33. Mathews I.C. (1986). Numerical techniques for three-dimensional steady-state fluid-structure interaction. J. Acoust. Soc. Amer. 79:1317–1325

    Article  ADS  MathSciNet  Google Scholar 

  34. Morand H., Ohayon R. (1995). Fluid Structure Interaction: Applied Numerical Methods. Wiley, New York

    MATH  Google Scholar 

  35. Ohayon R., Felippa C., eds. (2001). Special Issue on Fluid-Structure Interactions. Comput. Methods Appl. Mech. Engrg. 190:2977–3292

    Article  ADS  Google Scholar 

  36. Pazy A. (1983). Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences 44, Springer-Verlag, New York

    Book  MATH  Google Scholar 

  37. Phung, K.D.: Quantification of unique continuation for the wave equation with Dirichlet boundary condition. unpublished manuscript, 2004

  38. Ralston, J.: Gaussian Beams and the Propagation of Singularities. Studies in Partial Differential Equations (Edited by W. Littman) MAA Studies in Mathematics, 23, Washington, DC, 1982, 206–248

  39. Rauch J. (1976). Qualitative behavior of dissipative wave equations on bounded domains. Arch. Ration. Mech. Anal. 62:77–85

    Article  MathSciNet  MATH  Google Scholar 

  40. Rauch J., Zhang X., Zuazua E. (2005). Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl. 84: 407–470

    Article  MathSciNet  MATH  Google Scholar 

  41. Robbiano L. (1995). Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal. 10:95–115

    MathSciNet  MATH  Google Scholar 

  42. Rogers E.H. (1964). A minimax theory for overdamped systems. Arch. Ration. Mech. Anal. 16:89–96

    Article  MathSciNet  MATH  Google Scholar 

  43. San Martín J., Starovoitov V., Tucsnak M. (2002). Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161:113–147

    Article  MathSciNet  MATH  Google Scholar 

  44. Serre D. (1987). Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4:99–110

    Article  MathSciNet  MATH  Google Scholar 

  45. Slemrod M. (1989). Weak asymptotic decay via a “relaxed invariance principle” for a wave equation with nonlinear, nonmonotone damping. Proc. Roy. Soc. Edinburgh Sect. A 113:87–97

    Article  MathSciNet  MATH  Google Scholar 

  46. Stein K. et al. (2005). Fluid-structure interaction modelling of parachute soft-landing dynamics. Internat. J. Numer. Methods Fluids 47:619–631

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Tabachnikov, S.: Billiards. Panor. Synth. No. 1, 1995

  48. Takahashi T. (2003). Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8:1499–1532

    MathSciNet  MATH  Google Scholar 

  49. Takahashi T., Tucsnak M. (2004). Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6:53–77

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Taylor M.E. (1981). Pseudodifferential Operators. Princeton Mathematical Series 34, Princeton University Press, Princeton, N.J.

    MATH  Google Scholar 

  51. van Loon R., Anderson P.D., de Hart J., Baaijens F.P.T. (2004). A combined fictitious domain/adaptive meshing method for fluid Cstructure interaction in heart valves. Internat. J. Numer. Methods Fluids 46:533–544

    Article  ADS  MATH  Google Scholar 

  52. Vázquez J.-L., Zuazua E. (2003). Large time behavior for a simplified 1D model of fluid-solid interaction. Comm. Partial Differential Equations 28:1705–1738

    Article  MathSciNet  MATH  Google Scholar 

  53. Xia, D., Li, S., Yan, S., Shu, W.: Theory of Real Functions and Functional Analysis Vol. 2 (Second version). Gaodeng Jiaoyu Chubanshe (Higher Education Press), Beijing, 1985 (In Chinese)

  54. Zhang X., Li F. (1998). Existence, uniqueness and limit behavior of solutions to a nonlinear boundary-value problem with equivalued surface. Nonlinear Anal. 34:525–536

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang X., Zuazua E. (2003). Control, observation and polynomial decay for a coupled heat-wave system. C. R. Acad. Sci. Paris 336:823–828

    Article  MathSciNet  MATH  Google Scholar 

  56. Ziemer, W.P.: Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, 120, Springer-Verlag, Berlin 1989

  57. Zuazua, E.: Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Differential Equations vol. 3, Elsevier Science, to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zuazua, E. Long-Time Behavior of a Coupled Heat-Wave System Arising in Fluid-Structure Interaction. Arch Rational Mech Anal 184, 49–120 (2007). https://doi.org/10.1007/s00205-006-0020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0020-x

Keywords

Navigation