Skip to main content
Log in

Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To explore the feasibility of using amide proton transfer-weighted (APTw) MRI metrics as surrogate biomarkers to identify the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in glioblastoma (GBM).

Methods

Eighteen newly diagnosed GBM patients, who were previously scanned at 3T and had a confirmed MGMT methylation status, were retrospectively analysed. For each case, a histogram analysis in the tumour mass was performed to evaluate several quantitative APTw MRI metrics. The Mann-Whitney test was used to evaluate the difference in APTw parameters between MGMT methylated and unmethylated GBMs, and the receiver-operator-characteristic analysis was further used to assess diagnostic performance.

Results

Ten GBMs were found to harbour a methylated MGMT promoter, and eight GBMs were unmethylated. The mean, variance, 50th percentile, 90th percentile and Width10-90 APTw values were significantly higher in the MGMT unmethylated GBMs than in the MGMT methylated GBMs, with areas under the receiver-operator-characteristic curves of 0.825, 0.837, 0.850, 0856 and 0.763, respectively, for the discrimination of MGMT promoter methylation status.

Conclusions

APTw signal metrics have the potential to serve as valuable imaging biomarkers for identifying MGMT methylation status in the GBM population.

Key Points

• APTw-MRI is applied to predict MGMT promoter methylation status in GBMs.

• GBMs with unmethylated MGMT promoter present higher APTw-MRI than methylated GBMs.

• Multiple APTw histogram metrics can identify MGMT methylation status.

• Mean APTw values showed the highest diagnostic accuracy (AUC = 0.825).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

APTw:

Amide proton transfer-weighted

AUC:

Area under the curve

CEST:

Chemical exchange-dependent saturation transfer

FLAIR:

Fluid-attenuated inversion recovery

GBM:

Glioblastoma

Gd-T1w:

Gadolinium-enhanced T1-weighted

MGMT:

O6-methylguanine-DNA methyltransferase

MRI:

Magnetic resonance imaging

ROC:

Receiver operator characteristic curve

T1w:

T1-weighted

T2w:

T2-weighted

References

  1. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  2. Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114:443–458

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang J, Stevens MF, Laughton CA, Madhusudan S, Bradshaw TD (2010) Acquired resistance to temozolomide in glioma cell lines: molecular mechanisms and potential translational applications. Oncology 78:103–114

    Article  CAS  PubMed  Google Scholar 

  4. Ramirez YP, Weatherbee JL, Wheelhouse RT, Ross AH (2013) Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals (Basel) 6:1475–1506

    Article  Google Scholar 

  5. Woods D, Turchi JJ (2013) Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther 14:379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi C, Ganji S, Hulsey K et al (2013) A comparative study of short- and long-TE (1)H MRS at 3 T for in vivo detection of 2-hydroxyglutarate in brain tumors. NMR Biomed 26:1242–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ (2015) Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. Cancer Res 75:4416–4428

    Article  CAS  PubMed  Google Scholar 

  8. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  9. Zhao F, Li M, Kong L, Zhang G, Yu J (2016) Delineation of radiation therapy target volumes for patients with postoperative glioblastoma: a review. Onco Targets Ther 9:3197–3204

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weller M, Felsberg J, Hartmann C et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27:5743–5750

    Article  CAS  PubMed  Google Scholar 

  11. Sarkaria JN, Kitange GJ, James CD et al (2008) Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14:2900–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weller M, Stupp R, Reifenberger G et al (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51

    Article  CAS  PubMed  Google Scholar 

  13. Pope WB, Chen JH, Dong J et al (2008) Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis. Radiology 249:268–277

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ellingson BM (2015) Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep 15:506

    Article  PubMed  Google Scholar 

  15. Drabycz S, Roldan G, de Robles P et al (2010) An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49:1398–1405

    Article  CAS  PubMed  Google Scholar 

  16. Korfiatis P, Kline TL, Coufalova L et al (2016) MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kassner A, Thornhill RE (2010) Texture analysis: a review of neurologic MR imaging applications. AJNR Am J Neuroradiol 31:809–816

    Article  CAS  PubMed  Google Scholar 

  18. Harris RJ, Cloughesy TF, Liau LM et al (2015) pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-Oncol 17:1514–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moon WJ, Choi JW, Roh HG, Lim SD, Koh YC (2012) Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54:555–563

    Article  PubMed  Google Scholar 

  20. Corrigan F, Mander KA, Leonard AV, Vink R (2016) Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 13:264

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gupta A, Omuro AM, Shah AD et al (2012) Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: conventional and perfusion MRI revisited. Neuroradiology 54:641–643

    Article  PubMed  Google Scholar 

  22. Koyama H, Ikenuma H, Toda H et al (2017) Synthesis of PET probe O6-[(3-[11C]methyl)benzyl]guanine by Pd0-mediated rapid C-[11C]methylation toward imaging DNA repair protein O6-methylguanine-DNA methyltransferase in glioblastoma. Bioorg Med Chem Lett 27:1892–1896

    Article  CAS  PubMed  Google Scholar 

  23. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87

    Article  CAS  PubMed  Google Scholar 

  24. Zhou J, van Zijl PC (2006) Chemical exchange saturation transfer imaging and spectroscopy. Progr NMR Spectr 48:109–136

    Article  CAS  Google Scholar 

  25. Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nature Med 9:1085–1090

    Article  CAS  PubMed  Google Scholar 

  26. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126

    Article  PubMed  Google Scholar 

  27. Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128

    Article  PubMed  Google Scholar 

  28. Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology 16:441–448

    Article  CAS  PubMed  Google Scholar 

  29. Jiang S, Yu H, Wang X et al (2016) Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla. Eur Radiol 26:64–71

    Article  PubMed  Google Scholar 

  30. Yu H, Lou H, Zou T et al (2017) Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma. Eur Radiol:DOI. https://doi.org/10.1007/s00330-00017-04867-z

  31. Jia G, Abaza R, Williams JD et al (2011) Amide proton transfer MR imaging of prostate cancer: A preliminary study. J Magn Reson Imaging 33:647–654

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yuan J, Chen S, King AD et al (2014) Amide proton transfer-weighted imaging of the head and neck at 3 T: a feasibility study on healthy human subjects and patients with head and neck cancer. NMR Biomed 27:1239–1247

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wen Z, Hu S, Huang F et al (2010) MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 51:616–622

    Article  PubMed  PubMed Central  Google Scholar 

  34. Choi YS, Ahn SS, Lee SK et al (2017) Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Eur Radiol. https://doi.org/10.1007/s00330-00017-04732-00330

  35. Togao O, Hiwatashi A, Yamashita K et al (2017) Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol 27:578–588

    Article  PubMed  Google Scholar 

  36. Jiang S, Eberhart CG, Zhang Y et al (2017) Amide proton transfer-weighted MR image-guided stereotactic biopsy in patients with newly diagnosed gliomas. Eur J Cancer 83:9–18

    Article  PubMed  Google Scholar 

  37. Ma B, Blakeley JO, Hong X et al (2016) Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging 44:456–462

    Article  PubMed  PubMed Central  Google Scholar 

  38. Park KJ, Kim HS, Park JE, Shim WH, Kim SJ, Smith SA (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 26:4390–4403

    Article  PubMed  Google Scholar 

  39. Oue N, Shigeishi H, Kuniyasu H et al (2001) Promoter hypermethylation of MGMT is associated with protein loss in gastric carcinoma. Int J Cancer 93:805–809

    Article  CAS  PubMed  Google Scholar 

  40. Tee YK, Donahue MJ, Harston GW, Payne SJ, Chappell MA (2014) Quantification of amide proton transfer effect pre- and post-gadolinium contrast agent administration. J Magn Reson Imaging 40:832–838

    Article  PubMed  Google Scholar 

  41. Zhang Y, Heo HY, Lee DH et al (2016) Selecting the reference image for registration of CEST series. J Magn Reson Imaging 43:756–761

    Article  PubMed  Google Scholar 

  42. Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci (USA) 105:2266–2270

    Article  CAS  Google Scholar 

  43. Zhou J, Hong X, Zhao X, Gao J-H, Yuan J (2013) APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med 70:320–327

    Article  CAS  PubMed  Google Scholar 

  44. Jones CK, Huang A, Xu J et al (2013) Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124

    Article  PubMed  Google Scholar 

  45. Heo H-Y, Zhang Y, Lee D-H, Hong X, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 T. Magn Reson Med 75:137–138

    Article  CAS  PubMed  Google Scholar 

  46. Paech D, Zaiss M, Meissner JE et al (2014) Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One 9:e104181

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hua J, Jones CK, Blakeley J, Smith SA, van Zijl PCM, Zhou J (2007) Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain. Magn Reson Med 58:786–793

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou J, Blakeley JO, Hua J et al (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60:842–849

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liang HY, Huang YQ, Yang ZX, Ying D, Zeng MS, Rao SX (2016) Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases. Eur Radiol 26:2009–2018

    Article  PubMed  Google Scholar 

  50. Wang HY, Su ZH, Xu X et al (2016) Dynamic contrast-enhanced MR imaging in renal cell carcinoma: Reproducibility of histogram analysis on pharmacokinetic parameters. Sci Rep 6:29146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paz MF, Yaya-Tur R, Rojas-Marcos I et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10:4933–4938

    Article  CAS  PubMed  Google Scholar 

  52. Ahluwalia MS (2011) American Society of Clinical Oncology 2011 CNS tumors update. Expert Rev Anticancer Ther 11:1495–1497

    Article  PubMed  Google Scholar 

  53. Reifenberger G, Hentschel B, Felsberg J et al (2012) Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer 131:1342–1350

    Article  CAS  PubMed  Google Scholar 

  54. Muldoon LL, Gahramanov S, Li X, Marshall DJ, Kraemer DF, Neuwelt EA (2011) Dynamic magnetic resonance imaging assessment of vascular targeting agent effects in rat intracerebral tumor models. Neuro Oncol 13:51–60

    Article  PubMed  Google Scholar 

  55. Baur M, Preusser M, Piribauer M et al (2010) Frequent MGMT (0(6)-methylguanine-DNA methyltransferase) hypermethylation in long-term survivors of glioblastoma: a single institution experience. Radiol Oncol 44:113–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirk P, He T, Anderson LJ et al (2010) International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging 32:315–319

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pope WB, Lai A, Mehta R et al (2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol 32:882–889

    Article  CAS  PubMed  Google Scholar 

  58. Romano A, Calabria LF, Tavanti F et al (2013) Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status. Eur Radiol 23:513–520

    Article  PubMed  Google Scholar 

  59. Yan K, Fu Z, Yang C et al (2015) Assessing amide proton transfer (APT) MRI contrast origins in 9L gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol 17:479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zaiss M, Schmitt B, Bachert P (2011) Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J Magn Reson 211:149–155

    Article  CAS  PubMed  Google Scholar 

  61. Jin T, Wang P, Zong X, Kim S-G (2013) MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T. Magn Reson Med 69:760–770

    Article  CAS  PubMed  Google Scholar 

  62. Zu Z, Janve VA, Xu J, Does MD, Gore JC, Gochberg DF (2013) A new method for detecting exchanging amide protons using chemical exchange rotation transfer. Magn Reson Med 69:637–647

    Article  CAS  PubMed  Google Scholar 

  63. Lee JS, Xia D, Ge Y, Jerschow A, Regatte RR (2014) Concurrent saturation transfer contrast in in vivo brain by a uniform magnetization transfer MRI. Neuroimage 95:22–28

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zaiss M, Windschuh J, Paech D et al (2015) Relaxation-compensated CEST-MRI of the human brain at 7 T: Unbiased insight into NOE and amide signal changes in human glioblastoma. Neuroimage 112:180–188

    Article  PubMed  Google Scholar 

  65. Zaiss M, Windschuh J, Goerke S et al (2017) Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med 77:196–208

    Article  CAS  PubMed  Google Scholar 

  66. Heo HY, Zhang Y, Jiang S, Lee DH, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla. Magn Reson Med 75:1630–1639

    Article  CAS  PubMed  Google Scholar 

  67. Lee DH, Heo HY, Zhang K et al (2017) Quantitative assessment of the effects of water proton concentration and water T1 changes on amide proton transfer (APT) and nuclear overhauser enhancement (NOE) MRI: The origin of the APT imaging signal in brain tumor. Magn Reson Med 77:855–863

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Mary McAllister for editorial assistance.

Funding

This study was partially supported by grants from National Natural Science Foundation of China (81171322), Guangdong Provincial Natural Science Foundation (2014A030313271, S2012010009114), Guangdong Provincial Science and Technology Project (2014A020212726), Southern Medical University clinical research project (LC2016ZD028), and the National Institutes of Health (R01EB009731, R01CA166171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Jiang or Zhibo Wen.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Zhibo Wen, MD, PhD.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors (Dr. Fangyao Chen) has significant statistical expertise.

No complex statistical methods were necessary for this paper.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Study subjects or cohorts overlap

Three study subjects have been previously reported in one of our previous papers, in which we evaluated the diagnostic values of APTw imaging in differentiate PCNSL and malignant gliomas, see Ref. [29].

Methodology

retrospective

diagnostic or prognostic study

performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Rui, Q., Wang, Y. et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics. Eur Radiol 28, 2115–2123 (2018). https://doi.org/10.1007/s00330-017-5182-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5182-4

Keywords

Navigation