Skip to main content
Log in

Assessing Amide Proton Transfer (APT) MRI Contrast Origins in 9 L Gliosarcoma in the Rat Brain Using Proteomic Analysis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the biochemical origin of the amide photon transfer (APT)-weighted hyperintensity in brain tumors.

Procedures

Seven 9 L gliosarcoma-bearing rats were imaged at 4.7 T. Tumor and normal brain tissue samples of equal volumes were prepared with a coronal rat brain matrix and a tissue biopsy punch. The total tissue protein and the cytosolic subproteome were extracted from both samples. Protein samples were analyzed using two-dimensional gel electrophoresis, and the proteins with significant abundance changes were identified by mass spectrometry.

Results

There was a significant increase in the cytosolic protein concentration in the tumor, compared to normal brain regions, but the total protein concentrations were comparable. The protein profiles of the tumor and normal brain tissue differed significantly. Six cytosolic proteins, four endoplasmic reticulum proteins, and five secreted proteins were considerably upregulated in the tumor.

Conclusions

Our experiments confirmed an increase in the cytosolic protein concentration in tumors and identified several key proteins that may cause APT-weighted hyperintensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–96

    Article  CAS  PubMed  Google Scholar 

  2. Chang SM, Nelson S, Vandenberg S et al (2009) Integration of preoperative anatomic and metabolic physiologic imaging of newly diagnosed glioma. J Neuro-Oncol 92:401–15

    Article  Google Scholar 

  3. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–72

    Article  PubMed  Google Scholar 

  4. Zhou J, Payen J, Wilson DA et al (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nature Med 9:1085–90

    Article  CAS  PubMed  Google Scholar 

  5. Zhou J, Lal B, Wilson DA et al (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–6

    Article  PubMed  Google Scholar 

  6. Kauppinen RA, Kokko H, Williams SR (1992) Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain ex vivo and their partial purification. J Neurochem 58:967–74

    Article  CAS  PubMed  Google Scholar 

  7. Salhotra A, Lal B, Laterra J et al (2008) Amide proton transfer imaging of 9 L gliosarcoma and human glioblastoma xenografts. NMR Biomed 21:489–97

    Article  PubMed Central  PubMed  Google Scholar 

  8. Grossman R, Tyler B, Brem H et al (2012) Growth properties of SF188/V+ human glioma in rats in vivo observed by magnetic resonance imaging. J Neuro-Oncol 110(3):315–23

    Article  Google Scholar 

  9. Zhou J, Blakeley JO, Hua J et al (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60:842–9

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wen Z, Hu S, Huang F et al (2010) MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. NeuroImage 51:616–22

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhao X, Wen Z, Zhang G et al (2013) Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol 15:114–22

    Article  PubMed Central  PubMed  Google Scholar 

  12. Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nature Med 17:130–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hong X, Liu L, Wang M et al (2014) Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro Oncol 16:856–67

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sagiyama K, Mashimo T, Togao O et al (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci U S A 111:4542–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Burger PC, Dubois PJ, Schold SC et al (1983) Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma-multiforme. J Neurosurg 58(2):159–69

    Article  CAS  PubMed  Google Scholar 

  16. Jia G, Abaza R, Williams JD et al (2011) Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 33(3):647–54

    Article  PubMed Central  PubMed  Google Scholar 

  17. Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–28

    Article  PubMed  Google Scholar 

  18. Dula AN, Arlinghaus LR, Dortch RD et al (2013) Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 70:216–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Togao O, Kessinger CW, Huang G et al (2013) Characterization of lung cancer by amide proton transfer (APT) imaging: an in-vivo study in an orthotopic mouse model. Plos One 8:e77019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Desmond KL, Moosvi F, Stanisz GJ (2014) Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T. Magn Reson Med 71:1841–53

    Article  PubMed  Google Scholar 

  21. Zhao X, Wen Z, Huang F et al (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66:1033–41

    Article  PubMed Central  PubMed  Google Scholar 

  22. Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16:441–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chen W, Hu J (1999) Mapping brain metabolites using a double echo-filter metabolite imaging (DEFMI) technique. J Magn Reson 140:363–70

    Article  CAS  PubMed  Google Scholar 

  24. van Zijl PCM, Zhou J, Mori N et al (2003) Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 49:440–9

    Article  PubMed  Google Scholar 

  25. Zhou JY, Yan K, Zhu H (2012) A simple model for understanding the origin of the amide proton transfer MRI signal in tissue. Appl Magn Reson 42(3):393–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Westermeier R, Naven T (2002) Proteomics in practice. Wiley-VCH, Weinheim

    Book  Google Scholar 

  27. He QY, Chiu JF (2003) Proteomics in biomarker discovery and drug development. J Cell Biochem 89(5):868–86

    Article  CAS  PubMed  Google Scholar 

  28. Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812

    Article  CAS  PubMed  Google Scholar 

  29. Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectroscopy: a new technology for the analysis of protein expression in mammalian tissues. Nature Med 7:493–6

    Article  CAS  PubMed  Google Scholar 

  30. Hobbs SK, Shi G, Homer R et al (2003) Magnetic resonance imaging-guided proteomics of human glioblastoma multiforme. J Magn Reson Imag 18:530–6

    Article  Google Scholar 

  31. Li J, Zhuang Z, Okamoto H et al (2006) Proteomic profiling distinguishes astrocytomas and identifies differential tumor markers. Neurology 66:733–6

    Article  CAS  PubMed  Google Scholar 

  32. Shen J, Behrens B, Wistuba II et al (2006) Identification and validation of differences in protein levels in normal, premalignant, and malignant lung cells and tissues using high-throughput Western array and immunohischemistry. Cancer Res 66:11194–206

    Article  CAS  PubMed  Google Scholar 

  33. Yan K, Fu Z, Van Eyk J, Wang S, Zhou J, editors. Identification of endogenous proteins correlated with amide proton transfer (APT) imaging contrast using proteomic analysis. Proc 19th Annual Meeting ISMRM; 2011; Montreal.

  34. Tabuchi K, Moriya Y, Furuta T et al (1982) S-100 protein in human glial tumours. Qualitative and quantitative studies. Acta Neurochir (Wien) 65(3–4):239–51

    Article  CAS  Google Scholar 

  35. Iwadate Y, Sakaida T, Hiwasa T et al (2004) Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res 64(7):2496–501

    Article  CAS  PubMed  Google Scholar 

  36. Odreman F, Vindigni M, Gonzales ML et al (2005) Proteomic studies on low- and high-grade human brain astrocytomas. J Proteome Res 4(3):698–708

    Article  CAS  PubMed  Google Scholar 

  37. Zhang RL, Tremblay TL, Mcdermid A et al (2003) Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia 42(2):194–208

    Article  PubMed  Google Scholar 

  38. Palkovits M (1973) Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res 59:449–50

    Article  CAS  PubMed  Google Scholar 

  39. Jacobowitz DM (1974) Removal of discrete fresh regions of the rat brain. Brain Res 80(1):111–5

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, Zaiss M, Zu Z et al (2014) On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T. NMR Biomed 27:406–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Quesson B, Bouzier A-K, Thiaudiere E et al (1997) Magnetization transfer fast imaging of implanted glioma in the rat brain at 4.7 T: interpretation using a binary spin-bath model. J Magn Reson Imag 7:1076–83

    Article  CAS  Google Scholar 

  42. Heo H-Y, Zhang Y, Lee D-H, et al. (2014) Quantitative assessment of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 T. Magn Reson Med In press.

  43. Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–32

    Article  CAS  PubMed  Google Scholar 

  44. Zhou J, Hong X, Zhao X et al (2013) APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med 70:320–7

    Article  CAS  PubMed  Google Scholar 

  45. Hua J, Jones CK, Blakeley J et al (2007) Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain. Magn Reson Med 58:786–93

    Article  PubMed Central  PubMed  Google Scholar 

  46. Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64:425–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Silun Wang and Bachchu Lal for experimental assistance and Ms. Mary McAllister for editorial assistance. This work was supported in part by grants from the National Institutes of Health (R01EB009731, R01CA166171, R01NS083435, R21EB015555, P30CA006973, and HHSN268201000032C).

Conflict of Interest

None of the authors has any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyuan Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Fu, Z., Yang, C. et al. Assessing Amide Proton Transfer (APT) MRI Contrast Origins in 9 L Gliosarcoma in the Rat Brain Using Proteomic Analysis. Mol Imaging Biol 17, 479–487 (2015). https://doi.org/10.1007/s11307-015-0828-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0828-6

Key words

Navigation