Skip to main content
Log in

Methodological quality of diagnostic accuracy studies on non-invasive coronary CT angiography: influence of QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) items on sensitivity and specificity

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the methodological quality of diagnostic accuracy studies on coronary computed tomography (CT) angiography using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) tool.

Methods

Each QUADAS item was individually defined to adapt it to the special requirements of studies on coronary CT angiography. Two independent investigators analysed 118 studies using 12 QUADAS items. Meta-regression and pooled analyses were performed to identify possible effects of methodological quality items on estimates of diagnostic accuracy.

Results

The overall methodological quality of coronary CT studies was merely moderate. They fulfilled a median of 7.5 out of 12 items. Only 9 of the 118 studies fulfilled more than 75 % of possible QUADAS items. One QUADAS item (“Uninterpretable Results”) showed a significant influence (P = 0.02) on estimates of diagnostic accuracy with “no fulfilment” increasing specificity from 86 to 90 %. Furthermore, pooled analysis revealed that each QUADAS item that is not fulfilled has the potential to change estimates of diagnostic accuracy.

Conclusions

The methodological quality of studies investigating the diagnostic accuracy of non-invasive coronary CT is only moderate and was found to affect the sensitivity and specificity. An improvement is highly desirable because good methodology is crucial for adequately assessing imaging technologies.

Key Points

Good methodological quality is a basic requirement in diagnostic accuracy studies.

Most coronary CT angiography studies have only been of moderate design quality.

Weak methodological quality will affect the sensitivity and specificity.

No improvement in methodological quality was observed over time.

Authors should consider the QUADAS checklist when undertaking accuracy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. European Union (2010) Europe in figures—Eurostat yearbook 2010. Publications Office of the European Union, Luxembourg, pp 212–215

    Google Scholar 

  2. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:188–197

    Article  PubMed  Google Scholar 

  3. Luengo-Fernández R, Leal J, Gray A, Petersen S, Rayner M (2006) Cost of cardiovascular diseases in the United Kingdom. Heart 92:1384–1389

    Article  PubMed  Google Scholar 

  4. Russell MW, Huse DM, Drowns S, Hamel EC, Hartz SC (1998) Direct medical costs of coronary artery disease in the United States. Am J Cardiol 81:1110–1115

    Article  PubMed  CAS  Google Scholar 

  5. Noto TJ, Johnson LW, Krone R et al (1991) Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Catheter Cardiovasc Diagn 24:75–83

    Article  Google Scholar 

  6. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–177

    Article  PubMed  Google Scholar 

  7. Dewey M (2011) Cardiac CT. Springer, Berlin Heidelberg

    Book  Google Scholar 

  8. Schlattmann P, Schuetz GM, Dewey M (2011) Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis. Eur Radiol 21:1904–1913. doi:10.1007/s00330-011-2142-2

    Article  PubMed  Google Scholar 

  9. Lijmer JG, Leeflang M, Bossuyt PM (2009) Proposals for a phased evaluation of medical tests. Med Dec Making 29:E13–E21

    Article  Google Scholar 

  10. Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J (2004) Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med 140:189–202

    Article  PubMed  Google Scholar 

  11. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3:25

    Article  PubMed  Google Scholar 

  12. Dreier M, Borutta B, Stahmeyer J, Krauth C, Walter U (2010) Comparison of tools for assessing the methodological quality of primary and secondary studies in health technology assessment reports in Germany. DIMDI Schriftenr Health Technol Assess 102:176. doi:10.3205/hta000085L

    Google Scholar 

  13. Whiting P, Rutjes AW, Dinnes J, Reitsma JB, Bossuyt PM, Kleijnen J (2005) A systematic review finds that diagnostic reviews fail to incorporate quality despite available tools. J Clin Epidemiol 58:1–12

    Article  PubMed  Google Scholar 

  14. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9

    Article  PubMed  Google Scholar 

  15. Reitsma JB, Rutjes AWS, Whiting P, Vlassov VV, Leeflang MMG, Deeks JJ (2009) Chapter 9: Assessing methodological quality. In: Deeks JJ, Bossuyt PM, Gatsonis C (eds), Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy, Version 1.0.0., The Cochrane Collaboration: http://srdta.cochrane.org/.

  16. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  17. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990

    Article  PubMed  Google Scholar 

  18. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Thompson JR (2007) Bivariate random-effects meta-analysis and the estimation of between-study correlation. BMC Med Res Methodol 7:3

    Article  PubMed  Google Scholar 

  19. Dwamena BA (2007) midas: A program for Meta-analytical Integration of Diagnostic Accuracy Studies in Stata. Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor

    Google Scholar 

  20. Spearman C (2010) The proof and measurement of association between two things. Int J Epidemiol 39:1137–1150

    Article  PubMed  CAS  Google Scholar 

  21. Cohen J (1960) A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas 20:37–46. doi:10.1177/001316446002000104

    Article  Google Scholar 

  22. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374

    Article  PubMed  CAS  Google Scholar 

  23. Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 43:543–549

    Article  PubMed  CAS  Google Scholar 

  24. Alkadhi H, Stolzmann P, Desbiolles L et al (2010) Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart 96:933–938

    Article  PubMed  Google Scholar 

  25. Andreini D, Pontone G, Bartorelli AL et al (2009) Sixty-four-slice multidetector computed tomography: an accurate imaging modality for the evaluation of coronary arteries in dilated cardiomyopathy of unknown etiology. Circ Cardiovasc Imaging, United States, pp 199–205

    Google Scholar 

  26. Bettencourt N, Rocha J, Carvalho M et al (2009) Multislice computed tomography in the exclusion of coronary artery disease in patients with presurgical valve disease. Circ Cardiovasc Imaging 2:306–313

    Article  PubMed  Google Scholar 

  27. Boulmier D, Audinet C, Heautot JF et al (2009) Clinical contributions of 64-slice computed tomography in the evaluation of cardiomyopathy of unknown origin. Arch Cardiovasc Dis, Netherlands, pp 685–696

    Google Scholar 

  28. Cademartiri F, Maffei E, Palumbo A et al (2010) Diagnostic accuracy of computed tomography coronary angiography in patients with a zero calcium score. Eur Radiol 20:81–87

    Article  PubMed  Google Scholar 

  29. Carrascosa P, Capunay C, Deviggiano A et al (2010) Feasibility of 64-slice gadolinium-enhanced cardiac CT for the evaluation of obstructive coronary artery disease. Heart 96:1543–1549

    Article  PubMed  Google Scholar 

  30. Carrascosa P, Capunay C, Deviggiano A et al (2010) Accuracy of low-dose prospectively gated axial coronary CT angiography for the assessment of coronary artery stenosis in patients with stable heart rate. J Cardiovasc CT 4:197–205

    Google Scholar 

  31. De Graaf FR, Schuijf JD, Van Velzen JE et al (2010) Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease. Eur Heart J 31:1908–1915

    Article  PubMed  Google Scholar 

  32. Diederichsen AC, Petersen H, Jensen LO et al (2009) Diagnostic value of cardiac 64-slice computed tomography: importance of coronary calcium. Scand Cardiovasc J 43:337–344

    Article  PubMed  CAS  Google Scholar 

  33. Donati OF, Scheffel H, Stolzmann P et al (2010) Combined cardiac CT and MRI for the comprehensive workup of hemodynamically relevant coronary stenoses. Am J Roentgenol 194:920–926

    Article  Google Scholar 

  34. Hamdan A, Asbach P, Wellnhofer E et al (2011) A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging 4:50–61

    Article  PubMed  Google Scholar 

  35. Husmann L, Herzog BA, Burger IA et al (2010) Usefulness of additional coronary calcium scoring in low-dose CT coronary angiography with prospective ECG-triggering. Impact on total effective radiation dose and diagnostic accuracy. Acad Radiol 17:201–206

    Article  PubMed  Google Scholar 

  36. Jenkins SMM, Johnston N, Hawkins NM et al (2011) Limited clinical utility of CT coronary angiography in a district hospital setting. QJM 104:49–57

    Article  PubMed  CAS  Google Scholar 

  37. LaBounty TM, Leipsic J, Mancini GB, et al (2010) Effect of a standardized radiation dose reduction protocol on diagnostic accuracy of coronary computed tomographic angiography. Am J Cardiol 106:287–292

    Google Scholar 

  38. Meng L, Cui L, Cheng Y et al (2009) Effect of heart rate and coronary calcification on the diagnostic accuracy of the dual-source CT coronary angiography in patients with suspected coronary artery disease. Korean J Radiol 10:347–354

    Article  PubMed  Google Scholar 

  39. Nazeri I, Shahabi P, Tehrai M, Sharif-Kashani B, Nazeri A (2010) Impact of calcification on diagnostic accuracy of 64-slice spiral computed tomography for detecting coronary artery disease: a single center experience. Arch Iran Med 13:373–383

    PubMed  Google Scholar 

  40. Ovrehus KA, Jensen JK, Mickley HF et al (2010) Comparison of usefulness of exercise testing versus coronary computed tomographic angiography for evaluation of patients suspected of having coronary artery disease. Am J Cardiol 105:773–779

    Article  PubMed  Google Scholar 

  41. Ovrehus KA, Munkholm H, Bottcher M, Botker Hans E, Norgaard BL (2010) Coronary computed tomographic angiography in patients suspected of coronary artery disease: impact of observer experience on diagnostic performance and interobserver reproducibility. J Cardiovasc CT 4:186–194

    Google Scholar 

  42. Pontone G, Andreini D, Bartorelli AL et al (2009) Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol 54:346–355

    Google Scholar 

  43. Rocha-Filho JA, Blankstein R, Shturman LD et al (2010) Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology 254:410–419

    Article  PubMed  Google Scholar 

  44. Romagnoli A, Martuscelli E, Sperandio M et al (2010) Role of 64-slice cardiac computed tomography in the evaluation of patients with non-ST-elevation acute coronary syndrome. Radiol Med 115:341–353. doi:10.1007/s11547-009-0482-7

    Article  PubMed  CAS  Google Scholar 

  45. Sato A, Nozato T, Hikita H et al (2010) Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J Nucl Cardiol 17:19–26

    Article  PubMed  Google Scholar 

  46. Scheffel H, Stolzmann P, Plass A et al (2010) Coronary artery disease in patients with cardiac tumors: preoperative assessment by computed tomography coronary angiography. Interact Cardiovasc Thorac Surg 10:513–518

    Article  PubMed  Google Scholar 

  47. Sheikh M, Ben-Nakhi A, Shukkur AM, Sinan T, Al-Rashdan I (2009) Accuracy of 64-multidetector-row computed tomography in the diagnosis of coronary artery disease. Med Princ Pract 18:323–328

    Article  PubMed  Google Scholar 

  48. Stagnaro N, Della Latta D, Chiappino D (2009) Diagnostic accuracy of MDCT coronary angiography in patients referred for heart valve surgery. [Italian, English]. Radiol Med 114:728–742

    Article  PubMed  CAS  Google Scholar 

  49. Thomas C, Brodoefel H, Tsiflikas I et al (2010) Does clinical pretest probability influence image quality and diagnostic accuracy in dual-source coronary CT angiography? Acad Radiol 17:212–218

    Article  PubMed  Google Scholar 

  50. Ugolini P, Pressacco J, Lesperance J et al (2009) Evaluation of coronary atheroma by 64-slice multidetector computed tomography: comparison with intravascular ultrasound and angiography. Can J Cardiol 25:641–647

    Article  PubMed  CAS  Google Scholar 

  51. van Werkhoven JM, Heijenbrok MW, Schuijf JD et al (2010) Diagnostic accuracy of 64-slice multislice computed tomographic coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Am J Cardiol 105:302–305

    Google Scholar 

  52. Yang L, Zhang Z, Fan Z et al (2009) 64-MDCT coronary angiography of patients with atrial fibrillation: influence of heart rate on image quality and efficacy in evaluation of coronary artery disease. AJR Am J Roentgenol 193:795–801

    Article  PubMed  Google Scholar 

  53. Zhang LJ, Wu SY, Wang J et al (2010) Diagnostic accuracy of dual-source CT coronary angiography: the effect of average heart rate, heart rate variability, and calcium score in a clinical perspective. Acta Radiol 51:727–740

    Article  PubMed  Google Scholar 

  54. Achenbach S, Ropers D, Pohle FK et al (2005) Detection of coronary artery stenoses using multi-detector CT with 16 × 0.75 collimation and 375 ms rotation. Eur Heart J 26:1978–1986

    Article  PubMed  Google Scholar 

  55. Alkadhi H, Scheffel H, Desbiolles L et al (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776

    Article  PubMed  Google Scholar 

  56. Andreini D, Pontone G, Pepi M et al (2007) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 49:2044–2050

    Article  PubMed  Google Scholar 

  57. Bayrak F, Guneysu T, Gemici G et al (2008) Diagnostic performance of 64-slice computed tomography coronary angiography to detect significant coronary artery stenosis. Acta Cardiol 63:11–17

    Article  PubMed  Google Scholar 

  58. Bonmassari R, Muraglia S, Centonze M, Coser D, Stoppa G, Disertori M (2006) Noninvasive detection of coronary artery stenosis with 16-slice spiral computed tomography in a population at low to moderate risk for coronary artery disease. J Cardiovasc Med 7:817–825

    Article  Google Scholar 

  59. Brodoefel H, Burgstahler C, Tsiflikas I et al (2008) Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 247:346–355

    Article  PubMed  Google Scholar 

  60. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  61. Cademartiri F, Maffei E, Palumbo A et al (2007) Diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low-to-intermediate risk. Radiol Med (Torino) 112:969–981

    Article  CAS  Google Scholar 

  62. Carrascosa P, Capunay C, Bettinotti M et al (2007) Feasibility of gadolinium-diethylene triamine pentaacetic acid enhanced multidetector computed tomography for the evaluation of coronary artery disease. J Cardiovasc Comput Tomogr 1:86–94

    Article  PubMed  Google Scholar 

  63. Chow BJ, Dennie C, Hoffmann U et al (2007) Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease. Can J Cardiol 23:801–807

    Article  PubMed  Google Scholar 

  64. Coles DR, Wilde P, Oberhoff M, Rogers CA, Karsch KR, Baumbach A (2007) Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging 23:603–614

    Article  PubMed  Google Scholar 

  65. Cornily JC, Gilard M, Le Gal G et al (2007) Accuracy of 16-detector multislice spiral computed tomography in the initial evaluation of dilated cardiomyopathy. Eur J Radiol 61:84–90

    Article  PubMed  Google Scholar 

  66. Davin L, Lancellotti P, Bruyere PJ, Gach O, Pierard L, Legrand V (2007) Diagnostic accuracy of computed tomography coronary angiography in routine practice. Acta Cardiol 62:339–344

    Article  PubMed  Google Scholar 

  67. Deetjen AG, Conradi G, Mollmann S et al (2007) Diagnostic value of the 16-detector row multislice spiral computed tomography for the detection of coronary artery stenosis in comparison to invasive coronary angiography. Clin Cardiol 30:118–123

    Article  PubMed  Google Scholar 

  68. Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415

    Article  PubMed  Google Scholar 

  69. Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875. doi:10.1161/CIRCULATIONAHA.109.859280

    Article  PubMed  Google Scholar 

  70. Ehara M, Surmely JF, Kawai M et al (2006) Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography. Circ J 70:564–571

    Article  PubMed  Google Scholar 

  71. Erdogan N, Akar N, Vural M et al (2006) Diagnostic value of 16-slice multidetector computed tomography in symptomatic patients with suspected significant obstructive coronary artery disease. Hear Vessel 21:278–284

    Article  Google Scholar 

  72. Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411

    Article  PubMed  CAS  Google Scholar 

  73. Gaudio C, Mirabelli F, Pelliccia F et al (2009) Early detection of coronary artery disease by 64-slice multidetector computed tomography in asymptomatic hypertensive high-risk patients. Int J Cardiol 135:280–286. doi:10.1016/j.ijcard.2008.03.091

    Article  PubMed  Google Scholar 

  74. Ghersin E, Litmanovich D, Dragu R et al (2006) 16-MDCT coronary angiography versus invasive coronary angiography in acute chest pain syndrome: a blinded prospective study. AJR Am J Roentgenol 186:177–184

    Article  PubMed  Google Scholar 

  75. Ghostine S, Caussin C, Daoud B et al (2006) Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 48:1929–1934

    Article  PubMed  Google Scholar 

  76. Gilard M, Cornily JC, Pennec PY et al (2006) Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients with aortic valve stenosis. J Am Coll Cardiol 47:2020–2024

    Article  PubMed  Google Scholar 

  77. Grosse C, Globits S, Hergan K (2007) Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol 48:36–44

    Article  PubMed  CAS  Google Scholar 

  78. Hacker M, Jakobs T, Hack N et al (2007) Combined use of 64-slice computed tomography angiography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin 46:29–35

    PubMed  CAS  Google Scholar 

  79. Halon DA, Gaspar T, Adawi S et al (2007) Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography. Cardiology 108:200–209

    Article  PubMed  Google Scholar 

  80. Hausleiter J, Meyer T, Hadamitzky M et al (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: The Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J 28:3034–3041

    Article  PubMed  Google Scholar 

  81. Henneman MM, Schuijf JD, Jukema JW et al (2006) Comprehensive cardiac assessment with multislice computed tomography: evaluation of left ventricular function and perfusion in addition to coronary anatomy in patients with previous myocardial infarction. Heart 92:1779–1783

    Article  PubMed  CAS  Google Scholar 

  82. Henneman MM, Schuijf JD, Pundziute G et al (2008) Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol 52:216–222

    Article  PubMed  Google Scholar 

  83. Herzog BA, Husmann L, Burkhard N et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29:3037–3042

    Article  PubMed  Google Scholar 

  84. Herzog C, Nguyen SA, Savino G et al (2007) Does two-segment image reconstruction at 64-section CT coronary angiography improve image quality and diagnostic accuracy? Radiology 244:121–129

    Article  PubMed  Google Scholar 

  85. Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120

    Article  PubMed  Google Scholar 

  86. Hoffmann MH, Shi H, Schmitz BL et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478

    Article  PubMed  CAS  Google Scholar 

  87. Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643

    Article  PubMed  Google Scholar 

  88. Johnson TR, Nikolaou K, Busch S et al (2007) Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Investig Radiol 42:684–691

    Article  Google Scholar 

  89. Kaiser C, Bremerich J, Haller S et al (2005) Limited diagnostic yield of non-invasive coronary angiography by 16-slice multi-detector spiral computed tomography in routine patients referred for evaluation of coronary artery disease. Eur Heart J 26:1987–1992

    Article  PubMed  Google Scholar 

  90. Kefer J, Coche E, Legros G et al (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46:92–100

    Article  PubMed  Google Scholar 

  91. Kolnes K, Velle OH, Hareide S, Hegbom K, Wiseth R (2006) Multislice computed tomography coronary angiography at a local hospital: Pitfalls and potential. Acta Radiol 47:680–686

    Article  PubMed  CAS  Google Scholar 

  92. Laissy JP, Messika-Zeitoun D, Serfaty JM et al (2007) Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart 93:1121–1125

    Article  PubMed  Google Scholar 

  93. Langer C, Peterschroder A, Franzke K et al (2009) Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic resonance imaging. J Comput Assist Tomogr 33:179–185

    Article  PubMed  Google Scholar 

  94. Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  95. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  96. Leschka S, Scheffel H, Desbiolles L et al (2008) Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. Heart 94:1154–1161

    Article  PubMed  CAS  Google Scholar 

  97. Leschka S, Scheffel H, Husmann L et al (2008) Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography. AJR Am J Roentgenol 190:1583–1590

    Article  PubMed  Google Scholar 

  98. Maintz D, Ozgun M, Hoffmeier A et al (2007) Whole-heart coronary magnetic resonance angiography: value for the detection of coronary artery stenoses in comparison to multislice computed tomography angiography. Acta Radiol 48:967–973

    Article  PubMed  CAS  Google Scholar 

  99. Manghat NE, Morgan-Hughes GJ, Shaw SR et al (2007) Multi-detector row CT coronary angiography in patients with cardiomyopathy—initial single-centre experience. Clin Radiol 62:632–638

    Article  PubMed  CAS  Google Scholar 

  100. Marano R, De Cobelli F, Floriani I et al (2009) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19:1114–1123

    Article  PubMed  Google Scholar 

  101. Martuscelli E, Romagnoli A, D’Eliseo A et al (2004) Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J 25:1043–1048

    Article  PubMed  Google Scholar 

  102. Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T (2008) Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography. Comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol 52:1450–1455

    Article  PubMed  Google Scholar 

  103. Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144

    Article  PubMed  Google Scholar 

  104. Meijboom WB, Mollet NR, Van Mieghem CA et al (2006) Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol 48:1658–1665

    Article  PubMed  Google Scholar 

  105. Meijboom WB, Mollet NR, Van Mieghem CA et al (2007) 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart 93:1386–1392

    Article  PubMed  Google Scholar 

  106. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336

    Article  PubMed  CAS  Google Scholar 

  107. Mir-Akbari H, Ripsweden J, Jensen J et al (2009) Limitations of 64-detector-row computed tomography coronary angiography: calcium and motion but not short experience. Acta Radiol 50:174–180

    Article  PubMed  CAS  Google Scholar 

  108. Mollet NR, Cademartiri F, Krestin GP et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132

    Article  PubMed  Google Scholar 

  109. Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270

    Article  PubMed  Google Scholar 

  110. Mollet NR, Cademartiri F, van Mieghem CAG et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  111. Moon JY, Chung N, Choi BW et al (2005) The utility of multi-detector row spiral CT for detection of coronary artery stenoses. Yonsei Med J 46:86–94

    Article  PubMed  Google Scholar 

  112. Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ (2005) Highly accurate coronary angiography with submillimetre, 16 slice computed tomography. Heart 91:308–313

    Article  PubMed  CAS  Google Scholar 

  113. Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117

    Article  PubMed  Google Scholar 

  114. Nikolaou K, Rist C, Wintersperger BJ et al (2006) Clinical value of MDCT in the diagnosis of coronary artery disease in patients with a low pretest likelihood of significant disease. AJR Am J Roentgenol 186:1659–1668

    Article  PubMed  Google Scholar 

  115. Olivetti L, Mazza G, Volpi D, Costa F, Ferrari O, Pirelli S (2006) Multislice CT in emergency room management of patients with chest pain and medium-low probability of acute coronary syndrome. Radiol Med (Torino) 111:1054–1063

    Article  CAS  Google Scholar 

  116. Oncel D, Oncel G, Tastan A (2007) Effectiveness of dual-source CT coronary angiography for the evaluation of coronary artery disease in patients with atrial fibrillation: initial experience. Radiology 245:703–711

    Article  PubMed  Google Scholar 

  117. Oncel D, Oncel G, Tastan A, Tamci B (2007) Detection of significant coronary artery stenosis with 64-section MDCT angiography. Eur J Radiol 62:394–405

    Article  PubMed  Google Scholar 

  118. Pontone G, Andreini D, Ballerini G, Nobili E, Pepi M (2007) Diagnostic work-up of unselected patients with suspected coronary artery disease: complementary role of multidetector computed tomography, symptoms and electrocardiogram stress test. Coron Artery Dis 18:265–274

    Article  PubMed  Google Scholar 

  119. Pontone G, Andreini D, Quaglia C, Ballerini G, Nobili E, Pepi M (2007) Accuracy of multidetector spiral computed tomography in detecting significant coronary stenosis in patient populations with differing pre-test probabilities of disease. Clin Radiol 62:978–985

    Article  PubMed  CAS  Google Scholar 

  120. Postel T, Frick M, Feuchtner G et al (2007) Role of 16-multidetector computed tomography in the assessment of coronary artery stenoses: a prospective study of consecutive patients. Exp Clin Cardiol 12:149–152

    PubMed  Google Scholar 

  121. Pouleur AC, de Waroux JBL, Kefer J, Pasquet A, Vanoverschelde JL, Gerber BL (2008) Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography. Circ Cardiovasc Imaging 1:114–121

    Article  PubMed  Google Scholar 

  122. Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582

    Article  PubMed  Google Scholar 

  123. Pundziute G, Schuijf JD, Jukema JW et al (2008) Gender influence on the diagnostic accuracy of 64-slice multislice computed tomography coronary angiography for detection of obstructive coronary artery disease. Heart 94:48–52

    Article  PubMed  CAS  Google Scholar 

  124. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  125. Reant P, Brunot S, Lafitte S et al (2006) Predictive value of noninvasive coronary angiography with multidetector computed tomography to detect significant coronary stenosis before valve surgery. Am J Cardiol 97:1506–1510

    Article  PubMed  Google Scholar 

  126. Rixe J, Rolf A, Conradi G et al (2009) Detection of relevant coronary artery disease using dual-source computed tomography in a high probability patient series: comparison with invasive angiography. Circ J 73:316–322

    Article  PubMed  Google Scholar 

  127. Rodevand O, Hogalmen G, Gudim LP, Indrebo T, Molstad P, Vandvik PO (2006) Limited usefulness of non-invasive coronary angiography with 16-detector multislice computer tomography at a community hospital. Scand Cardiovasc J 40:76–82

    Article  PubMed  Google Scholar 

  128. Romeo F, Leo R, Clementi F et al (2007) Multislice computed tomography in an asymptomatic high-risk population. Am J Cardiol 99:325–328

    Article  PubMed  Google Scholar 

  129. Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97:343–348

    Article  PubMed  Google Scholar 

  130. Ropers U, Ropers D, Pflederer T et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50:2393–2398

    Article  PubMed  Google Scholar 

  131. Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137

    Article  PubMed  CAS  Google Scholar 

  132. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  133. Scheffel H, Leschka S, Plass A et al (2007) Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol 100:701–706

    Article  PubMed  Google Scholar 

  134. Schuijf JD, Pundziute G, Jukema JW et al (2006) Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 98:145–148

    Article  PubMed  Google Scholar 

  135. Shabestari AA, Abdi S, Akhlaghpoor S et al (2007) Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects. Am J Cardiol 99:1656–1661

    Article  PubMed  Google Scholar 

  136. Stolzmann P, Scheffel H, Leschka S et al (2008) Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering. AJR Am J Roentgenol 191:1684–1689

    Article  PubMed  Google Scholar 

  137. Tsai IC, Lee T, Lee WL et al (2007) Use of 40-detector row computed tomography before catheter coronary angiography to select early conservative versus early invasive treatment for patients with low-risk acute coronary syndrome. J Comput Assist Tomogr 31:258–264

    Article  PubMed  Google Scholar 

  138. Turkvatan A, Biyikoglu SF, Buyukbayraktar F, Olcer T, Cumhur T, Duru E (2008) Clinical value of 16-slice multidetector computed tomography in symptomatic patients with suspected coronary artery disease. Acta Radiol 49:400–408

    Article  PubMed  CAS  Google Scholar 

  139. Ulimoen GR, Gjonnaess E, Atar D, Dahl T, Stranden E, Sandbaek G (2008) Noninvasive coronary angiography with 64-channel multidetector computed tomography in patients with acute coronary syndrome. Acta Radiol 49:1140–1144

    Article  PubMed  CAS  Google Scholar 

  140. Watkins MW, Hesse B, Green CE et al (2007) Detection of coronary artery stenosis using 40-channel computed tomography with multi-segment reconstruction. Am J Cardiol 99:175–181

    Article  PubMed  Google Scholar 

  141. Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794

    Article  PubMed  Google Scholar 

  142. Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903. doi:10.1007/s00330-009-1618-9

    Article  PubMed  Google Scholar 

  143. Lipton MJ, Bogaert J, Boxt LM, Reba RC (2002) Imaging of ischemic heart disease. Eur Radiol 12:1061–1080. doi:10.1007/s003300101131

    Article  PubMed  Google Scholar 

  144. Achenbach S, Anders K, Kalender WA (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18:1188–1198. doi:10.1007/s00330-008-0883-3

    Article  PubMed  Google Scholar 

  145. Morris RK, Selman TJ, Zamora J, Khan KS (2011) Methodological quality of test accuracy studies included in systematic reviews in obstetrics and gynaecology: sources of bias. BMC Womens Health 11:7

    Article  PubMed  Google Scholar 

  146. Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111:3481–3488

    Article  PubMed  Google Scholar 

  147. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  148. Dewey M, Borges AC, Kivelitz D et al (2004) Coronary artery disease: new insights and their implications for radiology. Eur Radiol 14:1048–1054. doi:10.1007/s00330-003-2175-2

    Article  PubMed  Google Scholar 

  149. Zairis MN, Manousakis SJ, Stefanidis AS et al (2003) C-reactive protein and rapidly progressive coronary artery disease–is there any relation? Clin Cardiol 26:85–90

    Article  PubMed  Google Scholar 

  150. Moise A, Théroux P, Taeymans Y et al (1984) Clinical and angiographic factors associated with progression of coronary artery disease. J Am Coll Cardiol 3:659–667

    Article  PubMed  CAS  Google Scholar 

  151. Boone D, Halligan S, Mallett S, Taylor SA, Altman DG (2012) Systematic review: bias in imaging studies—the effect of manipulating clinical context, recall bias and reporting intensity. Eur Radiol 22:495–505. doi:10.1007/s00330-011-2294-0

    Article  PubMed  Google Scholar 

  152. Lijmer JG, Mol BW, Heisterkamp S et al (1999) Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 282:1061–1066

    Article  PubMed  CAS  Google Scholar 

  153. Rutjes AW, Reitsma JB, Di Nisio M, Smidt N, van Rijn JC, Bossuyt PM (2006) Evidence of bias and variation in diagnostic accuracy studies. CMAJ 174:469–476

    PubMed  Google Scholar 

  154. Hollingworth W, Medina LS, Lenkinski RE et al (2006) Interrater reliability in assessing quality of diagnostic accuracy studies using the QUADAS tool. A preliminary assessment. Acad Radiol 13:803–810

    Article  PubMed  Google Scholar 

  155. Westwood ME, Whiting PF, Kleijnen J (2005) How does study quality affect the results of a diagnostic meta-analysis? BMC Med Res Methodol 5:20

    Article  PubMed  Google Scholar 

  156. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  157. Kitchener L, Alderson P, Eisinga A, Hetherington J, Owens N (2005) Glossary of Terms in The Cochrane Collaboration. Version 4.2.5 (updated May 2005). The Cochrane Collaboration, Available from: www.cochrane.org.

  158. Schueler S, Schuetz GM, Dewey M (2012) The Revised QUADAS-2 Tool. Ann Intern Med 156:323

    Article  PubMed  Google Scholar 

  159. Dawes M (2011) Putting evidence into practice. BMJ 342:d2072

    Article  PubMed  Google Scholar 

  160. Howick J, Chalmers I, Glasziou P, et al. (2011) The Oxford 2011 Levels of Evidence. Oxford Centre for Evidence-Based Medicine, http://www.cebm.net/index.aspx?o=5653.

  161. Schünemann HJ, Schünemann AH, Oxman AD et al (2008) Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 336:1106–1110

    Article  PubMed  Google Scholar 

  162. Sardanelli F, Hunink MG, Gilbert FJ, Di Leo G, Krestin GP (2010) Evidence-based radiology: why and how? Eur Radiol 20:1–15

    Article  PubMed  Google Scholar 

  163. Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 43:551–558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Joint programme of the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF) for meta-analyses (01KG1013, 01KG1110).

A pool of 88 studies were obtained from a former investigation of our working group (Schuetz et al., Ann Intern Med, 2010) and additionally 30 studies were retrieved by a systematic search update.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dewey.

Appendix

Appendix

Table 6 Consensus reviewers’ judgement for all QUADAS items and summary of assessments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schueler, S., Walther, S., Schuetz, G.M. et al. Methodological quality of diagnostic accuracy studies on non-invasive coronary CT angiography: influence of QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) items on sensitivity and specificity. Eur Radiol 23, 1603–1622 (2013). https://doi.org/10.1007/s00330-012-2763-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2763-0

Keywords

Navigation