Skip to main content
Log in

Elevational variation of body size and reproductive traits in high-latitude wolf spiders (Araneae: Lycosidae)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Environmental gradients can help us comprehend the range of adaptations or plasticity that a given species can exhibit in response to climatic change. In this study, we assessed the response in female body size, clutch size and egg volume to elevational gradients in closely related wolf spiders. We measured these traits in Pardosa glacialis, P. hyperborea, P. furcifera and P. palustris, collected along elevational gradients across six sites in Arctic and sub-Arctic regions (four sites in Greenland, one in Iceland and one in the Faroe Islands), although not all species were found at all sites. Body size and reproductive traits did not vary with elevation in a consistent manner among species although smaller species were more sensitive to the gradients. The positive relationship between body size and clutch size was most pronounced in the larger species, indicating that larger species are better able to translate favourable environmental conditions into a larger reproductive output. Our study illustrates that elevational gradients may not fully capture spatial variation in environmental conditions experienced by high-latitude wolf spider species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ameline C, Puzin C, Bowden JJ, Lambeets K, Vernon P, Pétillon J (2017) Habitat specialization and climate affect arthropod fitness: a comparison of generalist vs. specialist spider species in Arctic and temperate biomes. Biol J Linn Soc 121:592–599

    Article  Google Scholar 

  • Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  Google Scholar 

  • Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can Arctic life count on Evolution? Integr Comp Biol 44:140–151

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174

    Article  Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424

    Article  CAS  Google Scholar 

  • Bonte D, Lens L, Maelfait J-P, Hoffmann M, Kuijken E (2003) Patch quality and connectivity influence spatial dynamics in a dune wolfspider. Oecologia 135:227–233

    Article  Google Scholar 

  • Bowden JJ, Buddle CM (2010) Spider assemblages across elevational and latitudinal gradients in the Yukon Territory, Canada. Arctic 63:261–272

    Article  Google Scholar 

  • Bowden JJ, Buddle CM (2012a) Egg sac parasitism of Arctic wolf spiders (Araneae: Lycosidae) from northwestern North America. J Arachnol 40:348–350

    Article  Google Scholar 

  • Bowden JJ, Buddle CM (2012b) Life history of tundra-dwelling wolf spiders (Araneae: Lycosidae) from the Yukon Territory, Canada. Can J Zool 90:714–721

    Article  Google Scholar 

  • Bowden JJ, Høye TT, Buddle CM (2013) Fecundity and sexual size dimorphism of wolf spiders (Araneae: Lycosidae) along an elevational gradient in the Arctic. Polar Biol 36:831–836

    Article  Google Scholar 

  • Bowden JJ, Hansen RR, Olsen K, Høye TT (2015) Habitat-specific effects of climate change on a low-mobility Arctic spider species. Polar Biol 38:559–568

    Article  Google Scholar 

  • Brown CA, Sanford BM, Swerdon RR (2003) Clutch size and offspring size in the wolf spider Pirata sedentarius (Araneae, Lycosidae). J Arachnol 31:285–296

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Buddle CM (2000) Life history of Pardosa moesta and Pardosa mackenziana (Araneae, Lycosidae) in central Alberta, Canada. J Arachnol 28:319–328

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kokidze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  CAS  Google Scholar 

  • Cameron ER, Buddle CM (2017) Seasonal change and microhabitat association of Arctic spider assemblages (Arachnida: Araneae) on Victoria Island (Nunavut, Canada). Can Entomol 149:357–371

    Article  Google Scholar 

  • Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169

    Article  Google Scholar 

  • Conover DO, Present TM (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83:316–324

    Article  Google Scholar 

  • Dondale CD, Redner JH (1990) The insects and arachnids of Canada. Part 17. The wolf spiders, nurseryweb spiders, and lynx spiders of Canada and Alaska (Araneae: Lycosidae, Pisauridae, and Oxyopidae). Canadian Department of Agriculture Publications, Ottawa

  • Duarte CM, Lenton TM, Wadhams P, Wassmann P (2012) Abrupt climate change in the Arctic. Nat Clim Change 2:60–62

    Article  Google Scholar 

  • Edgar WD (1971) The life-cycle, abundance and seasonal movement of the wolf spider, Lycosa (Pardosa) lugubris, in Central Scotland. J Anim Ecol 40:303–322

    Article  Google Scholar 

  • Entling W, Schmidt-Entling MH, Bacher S, Brandl R, Nentwig W (2010) Body size-climate relationships of European spiders. J Biogeogr 37:477–485

    Article  Google Scholar 

  • Ernst CM, Loboda S, Buddle CM (2016) Capturing northern biodiversity: diversity of arctic, subarctic and north boreal beetles and spiders are affected by trap type and habitat. Insect Conserv Diver 9:63–73

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Forster J, Hirst AG, Atkinson D (2011a) How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing. Funct Ecol 25:1024–1031

    Article  Google Scholar 

  • Forster J, Hirst AG, Woodward G (2011b) Growth and development rates have different thermal responses. Am Nat 178:668–678

    Article  Google Scholar 

  • Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. PNAS 109:19310–19314

    Article  CAS  Google Scholar 

  • Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369

    Article  CAS  Google Scholar 

  • Fox J, Weisberg S (2011) Package car. An {R} Companion to applied regression, 2nd edn. Sage, Thousand Oaks CA

    Google Scholar 

  • Greenslade PJM (1983) Adversity selection and the habitat template. Am Nat 122:352–365

    Article  Google Scholar 

  • Gür H (2010) Why do Anatolian ground squirrels exhibit a Bergmannian size pattern? A phylogenetic comparative analysis of geographic variation in body size. Biol J Linn Soc 100:695–710

    Article  Google Scholar 

  • Hallander H (1967) Range and movements of the wolf spiders Pardosa chelata (O. F. Müller) and P. pullata (Clerck). Oikos 18:360–364

    Article  Google Scholar 

  • Hammel JU, Nickel M (2008) Pardosa hyperborea (Araneae: Lycosidae): a first report from Disko Island (West Greenland), with remarks on the biogeography of the species. Ent Meddr 76:41–47

    Google Scholar 

  • Hansen RR, Hansen OLP, Bowden JJ, Normand S, Bay C, Sørensen JG, Høye TT (2016a) High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap. Polar Biol 39:2263–2272

    Article  Google Scholar 

  • Hansen RR, Hansen OLP, Bowden JJ, Treier UA, Normand S, Høye TT (2016b) Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities. PeerJ 4:e2224

    Article  Google Scholar 

  • Hein N, Feilhauer H, Löffler J, Finch O-D (2015) Elevational variation of reproductive traits in five Pardosa (Lycosidae) species. Arct Antarct Alp Res 47:473–479

    Article  Google Scholar 

  • Hein N, Brendel MR, Feilhauer H, Finch O-D, Löffler J (2018) Egg size versus egg number trade-off in the alpine-tundra wolf spider, Pardosa palustris (Araneae: Lycosidae). Polar Biol 41:1607–1617

    Article  Google Scholar 

  • Hendrickx F, Maelfait J-P (2003) Life cycle, reproductive patterns and their year-to-year variation in a field population of the wolf spider Pirata piraticus (Aranea, Lycosidae). J Arachnol 31:331–339

    Article  Google Scholar 

  • Hendrickx F, Maelfait J-P, Speelmans M, Van Straalen NM (2003) Adaptive reproductive variation along a pollution gradient in a wolf spider. Oecologia 134:189–194

    Article  Google Scholar 

  • Hervé M (2015) RVAideMemoire: diverse basic statistical and graphical functions. R package version 0.9-45-2. http://CRAN.R-project.org/package=RVAideMemoire

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  Google Scholar 

  • Holm E (1988) Environmental restraints and life strategies: a habitat templet matrix. Oecologia 75:141–145

    Article  CAS  Google Scholar 

  • Horne CR, Hirst AG, Atkinson D (2015) Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol Lett 18:327–335

    Article  Google Scholar 

  • Horne CR, Hirst AG, Atkinson D (2018) Insect temperature-body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Funct Ecol 32:948–957

    Article  Google Scholar 

  • Høye TT, Hammel J (2010) Climate change and altitudinal variation in sexual size dimorphism of arctic wolf spiders. Clim Res 41:259–265

    Article  Google Scholar 

  • Høye TT, Sikes DS (2013) Arctic entomology in the 21st century. Can Entomol 145:125–130

    Article  Google Scholar 

  • Høye TT, Hammel JU, Fuchs T, Toft S (2009) Climate change and sexual size dimorphism in an Arctic spider. Biol Lett 5:542–544

    Article  Google Scholar 

  • Høye TT, Bowden JJ, Hansen OLP, Hansen RR, Henriksen TN, Niebuhr A, Skytte MG (2018) Elevation modulates how Arctic arthropod communities are structured along local environmental gradients. Polar Biol 41:1555–1565

    Article  Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  Google Scholar 

  • Kraus JM, Morse DH (2005) Seasonal habitat shift in an intertidal wolf spider: proximal cues associated with migration and substrate preference. J Arachnol 33:110–123

    Article  Google Scholar 

  • Marshall SJ, Sharp MJ, Burgess DO, Anslow FS (2007) Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: implications for regional downscaling of temperature. Int J Climatol 27:385–398

    Article  Google Scholar 

  • Marusik YM (2015) Aranea (Spiders). In: Böcher J, Kristensen NP, Pape T, Vilhelmsen L (ed) The Greenland Entomofauna: an identification manual of insects, spiders and their allies. Fauna Entomological Scandinavica, vol 44. Brill, Leiden, pp 666–703

  • Morse DH (2002) Orientation and movement of wolf spiders Pardosa lapidicina (Araneae, Lycosidae) in the intertidal zone. J Arachnol 30:601–609

    Article  Google Scholar 

  • Mousseau TA (1997) Ectotherms follow the converse Bergmann’s rule. Evolution 51:630–632

    Article  Google Scholar 

  • O’Neill HB, Burn CR, Kokelj SV, Lantz TC (2015) ‘Warm’ Tundra: atmospheric and near-surface ground temperature inversions across an alpine treeline in continuous permafrost, western Arctic, Canada. Permafrost Periglac 26:103–118

    Article  Google Scholar 

  • Ohlberger J (2013) Climate warming and ectotherm body size—from individual physiology to community ecology. Funct Ecol 27:991–1001

    Article  Google Scholar 

  • Pétillon J, Puzin C, Acou A, Outreman Y (2009) Plant invasion phenomenon enhances reproduction performance in an endangered spider. Naturwissenschaften 96:1241–1246

    Article  Google Scholar 

  • Pétillon J, Lambeets K, Ract-Madoux B, Vernon P, Renault D (2011) Saline stress tolerance partly matches with habitat preference in ground-living wolf spiders. Physiol Entomol 36:165–172

    Article  Google Scholar 

  • Pickavance JR (2001) Life-cycles of four species of Pardosa (Araneae, Lycosidae) from the island of Newfoundland, Canada. J Arachnol 29:367–377

    Article  Google Scholar 

  • Puzin C, Acou A, Bonte D, Pétillon J (2011) Comparison of reproductive traits between two salt-marsh wolf spiders (Araneae, Lycosidae) under different habitat suitability conditions. Anim Biol 61:127–138

    Article  Google Scholar 

  • Puzin C, Leroy B, Pétillon J (2014) Intra-and inter-specific variation in size and habitus of two sibling spider species (Araneae: Lycosidae): taxonomic and biogeographic insights from sampling across Europe. Biol J Linn Soc 113:85–96

    Article  Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing Version 3.3.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Richter CJJ, Den Hollander J, Vlijm L (1971) Differences in breeding and motility between Pardosa pullata (Clerk) and Pardosa prativaga (L. Koch), (Lycosidae, Araneae) in relation to habitat. Oecologia 327:318–327

    Article  Google Scholar 

  • Roff D (2002) Life history evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake TC (2017) Higher predation risk for insect prey at low latitudes and elevations. Science 356:742–744

    Article  CAS  Google Scholar 

  • Schaefer M (1977) Winter ecology of spiders (Araneida). Z Angew Entomol 83:113–134

    Article  Google Scholar 

  • Semmens KA, Ramage J, Bartsch A, Liston GE (2013) Early snowmelt events: detection, distribution, and significance in a major sub-arctic watershed. Environ Res Lett 8:014020

    Article  Google Scholar 

  • Shelomi M (2012) Where are we now? Bergmann’s rule sensu lato in insects. Am Nat 180:511–519

    Article  Google Scholar 

  • Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406

    Article  Google Scholar 

  • Stillwell RC (2010) Are latitudinal clines in body size adaptive? Oikos 119:1387–1390

    Article  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44:261–280

    Article  Google Scholar 

  • Wang Q, Fan X, Wang M (2016) Evidence of high-elevation amplification versus Arctic amplification. Sci Rep 6:19219

    Article  CAS  Google Scholar 

  • Whitney TD, Philip BN, Harwood JD (2014) Tradeoff in two winter-active wolf spiders: increased mortality for increased growth. Entomol Exp Appl 153:191–198

    Article  Google Scholar 

Download references

Acknowledgements

This work was part of the SPACEWOLF project (Spatial gradients in physiological adaptation and life-history traits of Arctic wolf spiders) led by Julien Pétillon and Philippe Vernon, and funded by INTERACT: International Network for Terrestrial Research and Monitoring in the Arctic. Cyril Courtial helped sample in Kobbefjord. Karina Fisker collected the samples in Iceland; Ana Luisa Machado and Mónica J.B. Amorim helped sample in the Faroe Islands. Parasitoids were identified by Claire Villemant, UMR 7205 Institut de Systématique, Évolution, Biodiversité, MNHN. We thank three anonymous reviewers for providing insightful comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Ameline.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameline, C., Høye, T.T., Bowden, J.J. et al. Elevational variation of body size and reproductive traits in high-latitude wolf spiders (Araneae: Lycosidae). Polar Biol 41, 2561–2574 (2018). https://doi.org/10.1007/s00300-018-2391-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2391-5

Keywords

Navigation