Skip to main content
Log in

Egg size versus egg number trade-off in the alpine-tundra wolf spider, Pardosa palustris (Araneae: Lycosidae)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The effect of environmental conditions on reproductive traits in spiders is not completely understood. We studied the trade-off between the egg number and egg size of a common spider species along an elevational gradient in Norway. Life history theory predicts that egg size should decrease and clutch size increase as temperatures rise. In 2006, 2010, and 2014, female lycosid spiders (Pardosa palustris) carrying first egg sacs were hand sampled from 690 to 1460 m above sea level (a.s.l.). The eggs were counted, and the body and egg sizes for each female were individually estimated using digital photography. An analysis of covariance was performed using linear mixed-effects models to test for trade-off differences between sampling years, and along the elevational gradient. Unexpectedly, the egg size versus number trade-off was consistent along the elevational gradient, and thus appeared to be independent of elevation-induced temperature changes. However, this trade-off varied considerably between years. Egg-size variations in relation to body size appeared to be independent of year and did not vary along the elevational gradient. Our results revealed that the trade-off between egg number and egg size does not always hold and might be more plastic than assumed. This suggests that P. palustris, which has a broad habitat niche and a wide geographic distribution, will easily cope with temperature-regime shifts in cold environments. Consequently, this might lead to advantages regarding the offspring survival rate relative to coexisting species, and thus to changes in the terrestrial arthropod community of alpine-tundra ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almquist S (2005) Swedish Araneae, part 1, families Atypidae to Hahniidae (Linyphiidae excluded). Insect Syst Evol Suppl 62:284

    Google Scholar 

  • Ameline C, Puzin C, Bowden JJ, Lambeets K, Vernon P, Pétillon J (2017) Habitat specialization and climate affect arthropod fitness: a comparison of generalist vs. specialist spider species in Arctic and temperate biomes. Biol J Linn Soc Lond. https://doi.org/10.1093/biolinnean/blx014

    Article  Google Scholar 

  • Atkinson D (1994) Temperature and organism size: a biological law for ectotherms? Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Barry RG (2008) Mountain weather and climate. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bayram A (2000) A study of egg production in three species of wolf spiders (Araneae, Lycosidae), Pardosa amentata, P. palustris and P. pullata in the field. Isr J Ecol Evol 46:297–303

    Google Scholar 

  • Berger D, Walters R, Gotthard K (2008) What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Funct Ecol 22:523–529. https://doi.org/10.1111/j.1365-2435.2008.01392.x

    Article  Google Scholar 

  • Bernardo J (1996) The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am Zool 36:216–236. https://doi.org/10.1093/icb/36.2.216

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers and Distrib 5:165–174

    Article  Google Scholar 

  • Blanckenhorn WU (1997) Effects of temperature on growth, development and diapause in the yellow dung fly—against all the rules? Oecologia 111:318–324

    Article  PubMed  CAS  Google Scholar 

  • Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? The Q Rev Biol 75:385–407. https://doi.org/10.1086/393620

    Article  PubMed  CAS  Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424. https://doi.org/10.1093/icb/44.6.413

    Article  PubMed  CAS  Google Scholar 

  • Bowden JJ, Buddle CM (2010) Spider assemblages across elevational and latitudinal gradients in the Yukon Territory, Canada. Arctic 63:261–272. https://doi.org/10.14430/arctic1490

    Article  Google Scholar 

  • Bowden JJ, Høye TT, Buddle CM (2013) Fecundity and sexual size dimorphism of wolf spiders (Araneae: Lycosidae) along an elevational gradient in the Arctic. Polar Biol 36:831–836

    Article  Google Scholar 

  • Bowden JJ, Eskildsen A, Hansen RR, Olsen K, Curle CM, Høye TT (2015) High-arctic butterflies become smaller with rising temperatures. Biol Lett 11:20150574. https://doi.org/10.1098/rsbl.2015.0574

    Article  PubMed  PubMed Central  Google Scholar 

  • Breene RG III (2005) Arachnid developmental stages: Current terminology. College of the Southwest, Carlsbad, pp 1–5

    Google Scholar 

  • Brown C, Sanford BM, Swerdon RR (2003) Clutch size and offspring size in the wolf spider Pirata sedentarius. J Arachnol 31:285–296. https://doi.org/10.1636/m01-62

    Article  Google Scholar 

  • Chezik KA, Lester NP, Venturelli PA (2013) Fish growth and degree-days I: selecting a base temperature for a within-population study. Can J Fish Aquat Sci 71:47–55

    Article  Google Scholar 

  • Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev Camb Philos Soc 85:139–169

    Article  PubMed  Google Scholar 

  • Danks HV (1999) Life cycles in polar arthropods—flexible or programmed? Eur J Entomol 96:83–102

    Google Scholar 

  • Danks HV (2004) Seasonal adaptations in Arctic insects. Integr Comp Biol 44:85–94. https://doi.org/10.1093/icb/44.2.85

    Article  PubMed  Google Scholar 

  • Dixon AFG, Honěk A, Keil P, Kotela MAA, Šizling AL, Jarošík V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264. https://doi.org/10.1111/j.1365-2435.2008.01489.x

    Article  Google Scholar 

  • Finch OD, Löffler J (2010) Indicators of species richness at the local scale in an alpine region: a comparative approach between plant and invertebrate taxa. Biodivers Conserv 19:1341–1352. https://doi.org/10.1007/s10531-009-9765-5

    Article  Google Scholar 

  • Fischer K, Bot ANM, Brakefield PM, Zwaan BJ (2006) Do mothers producing large offspring have to sacrifice fecundity? J Evol Biol 19:380–391

    Article  PubMed  CAS  Google Scholar 

  • Ford MJ (1978) Locomotory activity and the predation strategy of the wolf-spider Pardosa amentata (Clerck) (Lycosidae). Anim Behav 26:31–35

    Article  Google Scholar 

  • Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369. https://doi.org/10.1146/annurev.ento.45.1.341

    Article  PubMed  CAS  Google Scholar 

  • Franz H (1979) Ökologie der Hochgebirge. Ulmer Verlag, Ulm

    Google Scholar 

  • Frick H, Nentwig W, Kropf C (2007) Influence of stand-alone trees on epigeic spiders (Araneae) at the alpine timberline. Ann Zool Fenn 44:43–57

    Google Scholar 

  • Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291. https://doi.org/10.1016/j.tree.2011.03.005

    Article  PubMed  Google Scholar 

  • Grinsted L, Breuker CJ, Bilde T (2014) Cooperative breeding favors maternal investment in size over number of eggs in spiders. Evolution 68:1961–1973. https://doi.org/10.1111/evo.12411

    Article  PubMed  Google Scholar 

  • Hagstrum DW (1971) Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann Entomol Soc Am 64:757–760. https://doi.org/10.1093/aesa/64.4.757

    Article  Google Scholar 

  • Hänggi A, Stöckli E, Nentwig W (1995) Lebensraume mitteleuropaischer Spinnen (Habitats of central European spiders). Miscellanea Faunistica Helvetiae 4. Schweizerisches Zentrum für die Erfassung der Fauna. Centre Suisse de cartographie de la faune, Neuchatel

  • Hauge E, Refseth D (1979) The spider fauna of 5 alpine and subalpine habitats in the Jotunheimen area, Southern Norway. Fauna norv Ser B 26:84–90

    Google Scholar 

  • Hein N, Feilhauer H, Finch OD, Schmidtlein S, Löffler J (2014a) Snow cover determines the ecology and biogeography of spiders (Araneae) in alpine tundra ecosystems. Erdkunde 68:157–172

    Article  Google Scholar 

  • Hein N, Pape R, Finch OD, Löffler J (2014b) Alpine activity patterns of Mitopus morio (Fabricius, 1779) are induced by variations in temperature and humidity at different scales in central Norway. J Mt Sci 11:644–655

    Article  Google Scholar 

  • Hein N, Feilhauer H, Löffler J, Finch OD (2015) Elevational variation of reproductive traits in five Pardosa (Lycosidae) species. Arct Antarct Alp Res 47:67–73. https://doi.org/10.1657/AAAR0013-111

    Article  Google Scholar 

  • Hendrickx F, Maelfait JP, Speelmans M, Van Straalen NM (2003) Adaptive reproductive variation along a pollution gradient in a wolf spider. Oecologia 134:189–194. https://doi.org/10.1007/s00442-002-1031-4

    Article  PubMed  Google Scholar 

  • Høye TT, Forchhammer MC (2008) The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations. BMC Ecol. https://doi.org/10.1186/1472-6785-8-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Høye TT, Hammel JU, Fuchs T, Toft S (2009) Climate change and sexual size dimorphism in an Arctic spider. Biol Lett 5:542–544. https://doi.org/10.1098/rsbl.2009.0169

    Article  PubMed  PubMed Central  Google Scholar 

  • Iida H, Kohno K, Takeda M (2016) Seasonal fluctuations in offspring body size in the wolf spider Pardosa astrigera (Araenae: Lycosidae). Appl Entomol Zool 51:125–131. https://doi.org/10.1007/s13355-015-0381-4

    Article  Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  • Kessler A (1971) Relation between egg production and food consumption in species of the genus Pardosa (Lycosidae, Araneae) under experimental conditions of food-abundance and food-shortage. Oecologia 8:93–109

    Article  PubMed  CAS  Google Scholar 

  • Kessler A (1973) A comparative study of the production of eggs in eight Pardosa species in the field (Araneida, Lycosidae). Tijdschr Entomol 116:23–41

    Google Scholar 

  • Kirchner W (1987) Behavioural and physiological adaptations to cold. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 66–77

    Chapter  Google Scholar 

  • Legault G, Weis AE (2013) The impact of snow accumulation on a heath spider community in a sub-Arctic landscape. Polar Biol 36:885–894. https://doi.org/10.1007/s00300-013-1313-9

    Article  Google Scholar 

  • Löffler J (2002) Altitudinal changes of ecosystem dynamics in the central Norwegian high mountains. Erde 133:227–258

    Google Scholar 

  • Löffler UCM, Cypionka H, Löffler J (2008) Soil microbial activity along an arctic-alpine altitudinal gradient from a seasonal perspective. Eur J Soil Sci 59:842–854. https://doi.org/10.1111/j.1365-2389.2008.01054.x

    Article  CAS  Google Scholar 

  • McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300

    Article  Google Scholar 

  • Moen A (1998) Nasjonalatlas for Norge: Vegetasjon (Norwegian national atlas: Vegetation). StatensKartverk (Norwegian Mapping Authority), Hønefoss

  • Mousseau TA (1997) Ectotherms follow the converse Bergmann’s rule. Evolution 51:630–632

    Article  PubMed  Google Scholar 

  • Moya-Laraño J, Macías-Ordóñez R, Blanckenhorn WU, Fernández-Montraveta C (2008) Analysing body condition: mass, volume or density? J Anim Ecol 77:1099–1108

    Article  PubMed  Google Scholar 

  • Muff P, Kropf C, Frick H, Nentwig W, Schmidt-Entling MH (2009) Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conserv Divers 2:36–44

    Article  Google Scholar 

  • Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38

    Article  Google Scholar 

  • Palanichamy S (1985) Effect of temperature on food utilization, growth and egg production in the spider Crytophora cicatrosa. J Therm Biol 10:63–70

    Article  Google Scholar 

  • Parker GA, Begon M (1986) Optimal egg size and clutch size: effects of environment and maternal phenotype. Am Nat 128:573–592

    Article  Google Scholar 

  • Pétillon J, Puzin C, Acou A, Outreman Y (2009) Plant invasion phenomenon enhances reproduction performance in an endangered spider. Naturwissenschaften 96:1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Pike DA (2014) Forecasting the viability of sea turtle eggs in a warming world. Glob Chang Biol 20:7–15. https://doi.org/10.1111/gcb.12397

    Article  PubMed  Google Scholar 

  • Post E (2013) Ecology of climate change: the importance of biotic interactions. Princeton University Press, Woodstock

    Book  Google Scholar 

  • Puzin C, Leroy B, Pétillon J (2014) Intra- and inter-specific variation in size and habitus of two sibling spider species (Araneae, Lycosidae): taxonomic and biogeographic insights from sampling across Europe. Biol J Linn Soc Lond 113:85–96. https://doi.org/10.1111/bij.12303

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 14 June 2007

  • Rickers S, Scheu S (2005) Cannibalism in Pardosa palustris (Araneae, Lycosidae): effects of alternative prey, habitat structure, and density. Basic Appl Ecol 6:471–478

    Article  Google Scholar 

  • Riechert SE, Tracy CR (1975) Thermal balance and prey availability: bases for a model relating web site characteristics to spider reproductive success. Ecology 56:265–284

    Article  Google Scholar 

  • Roff DA (2002) Life History Evolution. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Samu F, Biro Z (1993) Functional response, multiple feeding and wasteful killing in a wolf spider (Araneae: Lycosidae). Eur J Entomol 90:471–476

    Google Scholar 

  • Scharf I, Bauerfeind SS, Blanckenhorn WU, Schafer MA (2010) Effects of maternal and offspring environmental conditions on growth, development and diapause in latitudinal yellow dung fly populations. Clim Res 43:115–125. https://doi.org/10.3354/cr00907

    Article  Google Scholar 

  • Schmalhofer VR (2011) Impacts of temperature, hunger and reproductive condition on metabolic rates of flower-dwelling carb spiders (Araneae: Thomisidae). J Arachnol 39:41–52

    Article  Google Scholar 

  • Segers F, Taborsky B (2011) Egg size and food abundance interactively affect juvenile growth and behavior. Funct Ecol 25:166–176. https://doi.org/10.1111/j.1365-2435.2010.01790.x

    Article  Google Scholar 

  • Shelomi M (2012) Where Are We Now? Bergmann’s Rule Sensu Lato in Insects. Am Nat 180:511–519. https://doi.org/10.1086/667595

    Article  PubMed  Google Scholar 

  • Simpson MR (1995) Covariation of spider egg and clutch size: the influence of foraging and parental care. Ecology 76:795–800

    Article  Google Scholar 

  • Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506

    Article  Google Scholar 

  • Stahlschmidt ZR, Adamo SA (2015) Food-limited mothers favour offspring quality over offspring number: a principal components approach. Funct Ecol 29:88–95

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Steigen AL (1975) Energetics in a population of Pardosa palustris L. (Araneae, Lycosidae) on Hardangervidda. Fennoscandian Tundra Ecosystems: Part 2 Animals and systems analysis. Ecological Studies Vol. 17. Springer, Berlin, pp 129–144

    Chapter  Google Scholar 

  • Steiger S (2013) Bigger mothers are better mothers: disentangling size-related prenatal and postnatal maternal fitness. Proc R Soc B 280:20131225. https://doi.org/10.1098/rspb.2013.1225

    Article  PubMed  Google Scholar 

  • Verdeny-Vilalta O, Fox CW, Wise FD, Moya-Larano J (2015) Foraging mode affects the evolution of egg size in generalist predators embedded in complex food webs. J Evol Biol 28:1225–1233. https://doi.org/10.1111/jeb.12647

    Article  PubMed  CAS  Google Scholar 

  • Vertainen L, Alatalo RV, Mappes J, Parri S (2000) Sexual differences in growth strategies of the wolf spider Hygrolycosa rubrofasciata. Evol Ecol 14:595–610. https://doi.org/10.1023/A:1011080706931

    Article  Google Scholar 

  • Visakorpi K, Wirta HK, Ek M, Schmidt NM, Roslin T (2015) No detectable trophic cascade in a high-Arctic arthropod food web. Basic Appl Ecol 16:652–660

    Article  Google Scholar 

  • Vollrath F (1987) Growth, foraging and reproductive success. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 357–370

    Chapter  Google Scholar 

  • Walker SE, Rypstra AL, Marshall SD (2003) The relationship between offspring size and performance in the wolf spider Hogna helluo (Araneae, Lycosidae). Evol Ecol Res 5:19–28

    Google Scholar 

  • Willmer P, Stone G, Johnston J (2005) Environmental physiology of animals. Blackwell Publishing, Oxford

    Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • World Spider Catalog (2016) World Spider Catalog. Natural History Museum of Bern. http://wsc.nmbe.chVertain. Version 17.0. Accessed 18 April 2016

  • Wundram D, Pape R, Löffler J (2010) Alpine soil temperature variability at multiple scales. Arct Antarct and Alp Res 42:117–128

    Article  Google Scholar 

  • Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science 336:1516–1518. https://doi.org/10.1126/science.1222732

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank three anonymous reviewers and the guest editor for their many helpful comments, which significantly improved our manuscript. Nils Hein received funding by the DAAD during fieldwork in 2010. The study also received financial support from Color Line AS, Oslo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Hein.

Additional information

This article belongs to the special issue on the “Ecology of tundra arthropods”, coordinated by Toke T. Høye and Lauren E. Culler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hein, N., Brendel, M.R., Feilhauer, H. et al. Egg size versus egg number trade-off in the alpine-tundra wolf spider, Pardosa palustris (Araneae: Lycosidae). Polar Biol 41, 1607–1617 (2018). https://doi.org/10.1007/s00300-018-2301-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2301-x

Keywords

Navigation