Skip to main content
Log in

Fast direct melting of brackish sea-ice samples results in biologically more accurate results than slow buffered melting

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Sea-ice samples intended for biological analyses, e.g., chlorophyll-a, cell enumeration of algae and protozoa and primary production, are affected by the sampling and sample processing methods. In this study, we compared different sample processing methods by melting Baltic Sea ice samples in different ways (direct melting, buffered melting in filtered seawater (FSW) and buffered melting in artificial seawater at two different salinities with added nutrients) at two temperatures [+4 °C and room temperature (RT)]. We show that sea-ice samples intended for most commonly used biological analyses can be melted without the addition of FSW. In particular, adding artificial seawater should be avoided. To minimize biological processes, such as growth, death, predation and pigment degradation, the melting should be done rapidly at RT preferably by gently shaking the sample to keep the melt cool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen P, Throndsen J (2003) Estimating cell numbers. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae, monographs on oceanographic methology. UNESCO Publishing, Paris, pp 99–129

    Google Scholar 

  • Asmala E (2014) Transformation and removal of riverine dissolved organic matter in Baltic Sea estuaries. Monographs of the Boreal environmental research no. 45

  • Becquevort S, Dumont I, Tison J-L, Lannuzel D, Sauvée M-L, Chou L, Schoemann V (2009) Biogeochemistry and microbial community composition in sea ice and underlying seawater off East Antarctica during early spring. Polar Biol 32:879–895

    Article  Google Scholar 

  • Bloem J, Bär-Gilissen M-JB, Cappenberg TE (1986) Fixation, counting and manipulation of heterotrophic nanoflagellates. Appl Environ Microbiol 52:1266–1272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cox and Weeks (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–316

    Google Scholar 

  • Eddie B, Krembs C, Neuer S (2008) Characterization and growth response to temperature and salinity of psychrophilic, halotolerant Chlamydomonas sp. ARC isolated from Chukchi Sea ice. Mar Ecol Prog Ser 354:107–117

    Article  CAS  Google Scholar 

  • Eicken H (2009) Ice sampling and basic sea ice core analysis. In: Eicken H, Gradinger R, Salganek M, Shirasawa K, Perovich D, Leppäranta M (eds) Field techniques for sea ice research. University of Alaska Press, Fairbanks, pp 117–140

    Google Scholar 

  • Garrison DL (1991) Antarctic sea ice biota. Am Zool 31:17–33

    Google Scholar 

  • Garrison R, Buck KR (1986) Organism losses during ice melting: a seious bias in sea-ice community studies. Polar Biol 6:237–239

    Article  Google Scholar 

  • Gradinger R, Ikävalko J (1998) Organism incorporation into newly forming Arctic sea ice in the Greenland Sea. J Plankton Res 20:871–886

    Article  Google Scholar 

  • Granskog MA, Kaartokallio H, Shirasawa K (2003) Nutrient status of the Baltic Sea ice—evidence for control by snowice formation, ice permeability and ice algae. J Geophys Res 108(C8):3253. doi:10.1029/2002JC001386

    Article  Google Scholar 

  • Granskog MA, Ehn J, Niemelä M (2005) Characteristics and potential impacts of under-ice river plumes in the seasonally ice covered Bothnian Bay (Baltic Sea). J Mar Syst 53:187–196

    Article  Google Scholar 

  • Granskog M, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006) Sea ice in the Baltic Sea—a review. Estuar Coast Shelf Sci 70:145–160

    Article  Google Scholar 

  • Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 289–311

    Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  • Haecky P, Andersson A (1999) Primary and bacterial production in sea ice in the northern Baltic Sea. Aquat Microb Ecol 20:107–118

    Article  Google Scholar 

  • Haecky P, Jonsson S, Andersson A (1998) Influence of sea ice on the composition of the spring phytoplankton bloom in the northern Baltic Sea. Polar Biol 20:1–8

    Article  Google Scholar 

  • Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grashoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis. Wiley, Weinheim, pp 159–228

    Chapter  Google Scholar 

  • HELCOM (1988) Guidelines for the Baltic monitoring programme for the third stage; Part D biological determinants. Balt Sea Environ Proc 27D:16–23

    Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic and dial changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Hewes CD, Reid FMH, Holm-Hansen O (1984) The quantitative analyses of nanoplankton: a study on methods. J Plankton Res 6:601–613

    Article  Google Scholar 

  • Horner RA (1985) Taxonomy of sea ice microalgae. In: Horner RA (ed) Sea ice biota. CRC Press, Boca Raton, pp 147–157

    Google Scholar 

  • Huotari J, Ojala A, Peltomaa E, Nordbo A, Launiainen S, Pumpanen J, Rasilo T, Hari P, Vesala T (2011) Long-term direct CO2 flux measurements over a boreal lake. Five years of eddy covariance data. Geophys Res Lett 38:L18401. doi:10.1029/2011GL048753

  • Huttunen M, Niemi Å (1986) Sea ice algae in the Northern Baltic Sea. Mem Soc Fauna Flora Fenn 62:58–62

    Google Scholar 

  • Ikävalko J (1998) Further observations on flagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol 19:323–329

    Article  Google Scholar 

  • Ikävalko J, Thomsen H (1997) The Baltic Sea ice biota (March 1994): a study of the protistan community. Eur J Protistol 33:229–243

    Article  Google Scholar 

  • Ingham M, Gouws G, Buchanan S, Brown R, Haskell T (2012) In-situ measurements of the low frequency dielectric permittivity of first-year Antarctic sea ice. Cold Reg Sci Technol 83–84:139–146

    Article  Google Scholar 

  • Kaartokallio H, Kuosa H, Thomas DN, Granskog MA, Kivi K (2007) Biomass, composition and activity of organism assemblages along a salinity gradient in sea ice subjected to river discharge in the Baltic Sea. Polar Biol 30:183–197

    Article  Google Scholar 

  • Kottmeier ST, Sullivan CW (1988) Sea-ice microbial communities 9. Effects of temperature and salinity on rates of metabolism and growth of autotrophs and heterotrophs. Polar Biol 8:293–304

    Article  Google Scholar 

  • Kuosa H (1988) Enumeration of autotrophic and heterotrophic flagellates in Baltic Sea samples—a comparison of microscopical methods. Arch Hydrobiol Beih Ergebn Limnol 31:301–306

    Google Scholar 

  • Kuosa H, Kaartokallio H (2006) Experimental evidence on nutrient and substrate limitation of Baltic Sea ice algae and bacteria. Hydrobiologia 554:1–10

    Article  CAS  Google Scholar 

  • Laamanen M (1996) Cyanoprokaryotes in the Baltic Sea ice and winter plankton. Arch Hydrobiol Algol Stud 83:423–433

    Google Scholar 

  • Leppäkoski E, Gollasch S, Olenin S (2002) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer, Dordrecht

    Book  Google Scholar 

  • Leppäranta M, Manninen T (1988) The brine and gas content of sea ice with attention to low salinities and high temperatures. Finn Inst Mar Res Rep 1988:1–14

    Google Scholar 

  • Logares R, Regnefors K, Kremp A, Shalchian-Tabrizi K, Boltovskoy A, Tengs T, Shurtleff A, Klaveness D (2007) Phenotypically different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution?

  • Majaneva M, Rintala J-M, Piisilä M, Fewer DP, Blomster J (2012) Comparison of wintertime eukaryotic community from sea ice and open water in the Baltic Sea, based on sequencing of the 18S rRNA gene. Polar Biol 35:875–889

    Article  Google Scholar 

  • McMinn A, Gradinger R, Nomura D (2009) Biogeochemical properties of sea ice. In: Eicken H, Gradinger R, Salganek M, Shirasawa K, Perovich D, Leppäranta M (eds) Field techniques for sea ice research. University of Alaska Press, Fairbanks, pp 259–282

    Google Scholar 

  • Meiners K, Fehling J, Granskog MA, Spindler M (2002) Abundance, biomass and composition of biota in Baltic sea ice and underlying water (March 2000). Polar Biol 25:761–770

    Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Michel C, Nielsen TG, Nozais C, Gosselin M (2002) Significance of sedimentation and grazing by ice micro- and meiofauna for carbon cycling in annual sea ice (northern Baffin Bay). Aquat Microb Ecol 30:57–68

    Article  Google Scholar 

  • Mikkelsen DM, Witkowski A (2010) Melting sea ice for taxonomic analysis: a comparison of four melting procedures. Polar Res 29:451–454

    Article  Google Scholar 

  • Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, Raven JA, Granéli E, Glibert PM, Hansen PJ, Stoecker DK, Thingstad F, Tillmann U, Våge S, Wilken S, Zubkov MV (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005

    Article  CAS  Google Scholar 

  • Müller S, Uusikivi J, Vähätalo A, Majaneva M, Majaneva S, Autio R, Rintala J-M (manuscript in preparation) A bio-optical model for photosynthesis in sea ice

  • Niemi Å (1973) Ecology of phytoplankton in the Tvärminne area, SW coast of Finland I. Dynamics of hydrography, nutrients, chlorophyll and phytoplankton. Acta Bot Fenn 100:1–68

    Google Scholar 

  • Niemi M, Kuparinen J, Uusi-Rauva A, Korhonen K (1983) Preparation of 14C-labeled algal samples for liquid scintillation counting. Hydrobiologia 106:149–156

    Article  CAS  Google Scholar 

  • Norrman B, Andersson A (1994) Development of ice biota in the temperate sea area (Gulf of Bothnia). Polar Biol 14:531–537

    Article  Google Scholar 

  • Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, Göbel J, Gromisz S, Huseby S, Huttunen M, Jaanus A, Kokkonen P, Ledaine I, Niemkiewicz E (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt Sea Environ Proc 106:1–144, See also ‘Useful links to the products of HELCOM PEG: biovolume file’ at http://helcom.fi/helcom-at-work/projects/phytoplankton

  • Palosuo E (1961) Crystal structure of brackish and freshwater ice. IASH 54:9–14

    Google Scholar 

  • Piiparinen J, Kuosa H, Rintala J-M (2010) Winter-time ecology in Bothnian Bay, Baltic Sea: nutrients and algae in fast-ice. Polar Biol 33:1445–1461

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • Ralph PJ, McMinn A, Ryan KG, Ashworth C (2005) Short-term effect of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J Phycol 41:763–769

    Article  Google Scholar 

  • Riebesell U, Wolf-Gladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–251

    Article  CAS  Google Scholar 

  • Rintala J-M, Piiparinen J, Ehn J, Autio R, Kuosa H (2006) Changes in phytoplankton biomass and nutrient quantities in sea ice as responses to light/dark manipulations during different phases of the Baltic winter 2003. Hydrobiologia 554:11–24

    Article  CAS  Google Scholar 

  • Rintala J-M, Piiparinen J, Uusikivi J (2010) Drift ice and under-ice water communities in the Gulf of Bothnia (Baltic Sea). Polar Biol 33:179–191

    Article  Google Scholar 

  • Różańska M, Gosselin M, Poulin M, Wiktor JM, Michel C (2009) Influence of environmental factors on the development of bottom ice protist communities during the winter—spring transition. Mar Ecol Prog Ser 386:43–59

    Article  Google Scholar 

  • Salonen K (1981) Rapid and precise determination of total inorganic carbon and some gases in aqueous solutions. Water Res 15:403–406

    Article  CAS  Google Scholar 

  • Saxby-Rouen KJ, Leadbeater BSC, Reynolds CS (1998) The relationship between the growth of Synura petersenii (Synurophyceae) and components of the dissolved inorganic carbon system. Phycologia 37:467–477

    Article  Google Scholar 

  • Schindler DW, Fee EJ (1973) Diurnal variation of dissolved inorganic carbon and its use in estimating primary production and CO2 invasion in Lake 227. J Fish Res Board Can 30:1501–1510

    Article  CAS  Google Scholar 

  • Steemann Nielsen E, Jørgensen EG (1968) The adaptation of Plankton Algae I. General part. Physiol Plant 21:401–413

    Article  Google Scholar 

  • Steemann Nielsen E, Hansen VK, Jørgensen EG (1962) The adaptation to different light intensities in Chlorella vulgaris and the time dependence on transfer to a new light intensity. Physiol Plant 15:505–517

    Article  Google Scholar 

  • Steemann-Nielsen E (1952) The use of radioactive carbon (C14) for measuring organic production in the sea. J Cons Int Explor Mer 18:117–140

    Article  Google Scholar 

  • Stoecker DK, Buck KR, Putt M (1990) A flagellate and ciliate dominated microbial community in the land-fast ice. Antarctic J US 25:197–199

    Google Scholar 

  • Stoecker DK, Buck KR, Putt M (1993) Changes in the sea-ice brine community during the spring-summer transition, McMurdo sound, Antarctica. II Phagotrophic protists. Mar Ecol Prog Ser 95:103–113

    Article  Google Scholar 

  • Stoecker D, Autio R, Rintala J-M, Kuosa H (2005) Ecto-cellular enzyme activity associated with filamentous cyanobacteria. Aquat Microb Ecol 40:151–161

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Weeks WF, Gow AJ, Kosloff P, Digby-Argus S (1990) The internal structure, composition and properties of brackish ice from the Bay of Bothnia. CRREL Monogr 90:5–15

    Google Scholar 

  • Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rates in microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 269–285

    Google Scholar 

Download references

Acknowledgments

This study was funded by Walter and Andrée de Nottbeck Foundation (JMR, MM, JP, SM, JU) and Finnish Environment Institute (RA). Nordic Council of Ministers is acknowledged for funding on travel and accommodation granted for Nordic Network on Sea-ice Research (NetICE). All of the fieldwork and laboratory work were made possible by the facilities established in Tvärminne Zoological station, University of Helsinki. The skilled staff and personnel of the Tvärminne Zoological Station, especially Mervi Sjöblom and Eeva Nikkola who carried out the nutrient analyses, are acknowledged for their help and laboratory assistance during the experiment. Marine Research Centre of Finnish Environment Institute provided office space and laboratory assistance, of which the greatest gratitude goes to Johanna Oja who provided us the light microscopic cell enumeration of algae and protozoa. The three anonymous reviewers are also acknowledged. This study is a contribution to SCOR Working Group140 BEPSII (Biogeochemical Exchange Processes at the Sea-Ice Interfaces) task group 1 working on methodologies for guides to best practices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne-Markus Rintala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Supplementary material 2 (EPS 841 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rintala, JM., Piiparinen, J., Blomster, J. et al. Fast direct melting of brackish sea-ice samples results in biologically more accurate results than slow buffered melting. Polar Biol 37, 1811–1822 (2014). https://doi.org/10.1007/s00300-014-1563-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1563-1

Keywords

Navigation