Skip to main content
Log in

Biogeochemistry and microbial community composition in sea ice and underlying seawater off East Antarctica during early spring

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Pack ice, brines and seawaters were sampled in October 2003 in the East Antarctic sector to investigate the structure of the microbial communities (algae, bacteria and protozoa) in relation to the associated physico-chemical conditions (ice structure, temperature, salinity, inorganic nutrients, chlorophyll a and organic matter). Ice cover ranged between 0.3 and 0.8 m, composed of granular and columnar ice. The brine volume fractions sharply increased above −4°C in the bottom ice, coinciding with an important increase of algal biomass (up to 3.9 mg C l−1), suggesting a control of the algae growth by the space availability at that period of time. Large accumulation of NH4 + and PO4 3− was observed in the bottom ice. The high pool of organic matter, especially of transparent exopolymeric particles, likely led to nutrients retention and limitation of the protozoa grazing pressure, inducing therefore an algal accumulation. In contrast, the heterotrophs dominated in the underlying seawaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arrigo KR (2003) Primary production in sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 143–183

    Google Scholar 

  • Arrigo KR, Sullivan CW (1994) A high resolution bio-optical model of microalgal growth: tests using sea ice algal community time series data. Limnol Oceanogr 39:609–631

    CAS  Google Scholar 

  • Arrigo KR, Kremer JN, Sullivan CW (1993) A simulated Antarctic fast ice ecosystem. J Geophys Res 98(4):6929–6946

    Article  CAS  Google Scholar 

  • Arrigo KR, Dieckmann GS, Robinson DH, Fritsen CH, Sullivan CW (1995) A high resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: biomass, nutrient and production profiles within a dense microalgal bloom. Marine Ecol Prog Ser 127:255–268

    Article  Google Scholar 

  • Becquevort S (1997) Nanoprotozooplankton in the Atlantic sector of the Southern Ocean during early spring: biomass and feeding activities. Deep Sea Res II 44:355–373

    Article  Google Scholar 

  • Becquevort S, Mathot S, Lancelot C (1992) Interactions in the microbial community of the marginal ice zone of the northwestern Weddell Sea through size distribution analysis. Polar Biol 12:211–218

    Article  Google Scholar 

  • Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572

    Article  CAS  Google Scholar 

  • Clarke DB, Ackley SF (1984) Sea ice structure and biological activity in the antarctic marginal ice zone. J Geophys Res 89(C4):2087–2096

    Article  Google Scholar 

  • Comiso JC (2003) Large-scale characteristics and variability of the global sea ice cover. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 112–142

    Google Scholar 

  • Cota GF, Anning JL, Harris LR, Harrisson WG, Smith REH (1990) The impact of ice algae on inorganic nutrients in seawater and sea ice in Barrow Strait, NWT, Canada during spring. Can J Fish Aquat Sci 47:1402–1415

    Article  CAS  Google Scholar 

  • Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29(102):306–316

    Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular Genetics. Microbiol Mol Biol Rev 64:847–853

    Article  PubMed  CAS  Google Scholar 

  • De Baar HJW, de Jong JTM (2001) Distributions, sources and sinks of iron in seawater. In: Turner D, Hunter KA (eds) Biogeochemistry of iron in seawater, IUPAC book series on analytical and physical chemistry of environmental systems, vol 7. Wiley, New York, pp 123–253

    Google Scholar 

  • Decho AW (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin

    Google Scholar 

  • Dieckmann GS, Hellmer HH (2003) In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 143–183

  • Dieckmann GS, Lange MA, Ackley SF, Jr Jennings (1991) The nutrient status in sea ice of the Weddell Sea during winter: effects of sea ice texture and algae. Polar Biol 11:449–456

    Article  Google Scholar 

  • Dumont I, Schoemann V, Lannuzel D, Chou L, Tison J-L, Becquevort S (2009) Distribution and characterization of dissolved and particulate organic matter in Antarctic pack ice. Polar Biol. doi:10.1007/s00300-008-0577-y

  • Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13

    Article  Google Scholar 

  • Eicken H (1998) Deriving modes and rates of ice growth in the Weddell Sea from microstructural, salinity and stable-isotope data. In: Jeffries MO (ed) Antarctic sea ice: physical processes, interactions and variability, vol 74. American Geophysical Union, Washington DC, pp 89–122

  • Eicken H (2003) From the microscopic, to the macroscopic, to the regional scale: growth, microstructure and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 22–81

    Google Scholar 

  • Eicken H, Ackley SF, Richter-Menge JA, Lange MA (1991) Is the strength of sea ice related to its chlorophyll content? Polar Biol 11:347–350

    Article  Google Scholar 

  • Engel A, Passow U (2001) Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Marine Ecol Prog Ser 219:1–10

    Article  CAS  Google Scholar 

  • Fischer H (2003) The role of biofilms in the uptake and transformation of dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, San Diego, pp 285–313

  • Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protests. Springer, Berlin

    Google Scholar 

  • Gaines G, Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 224–268

    Google Scholar 

  • Garrison DL (1991) Antarctic sea ice biota. Am Zool 31:17–33

    Google Scholar 

  • Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239

    Article  Google Scholar 

  • Garrison DL, Close AR (1993) Winter ecology of the sea ice biota in Weddell Sea pack ice. Marine Ecol Prog Ser 96:17–31

    Article  Google Scholar 

  • Garrison DL, Mathot S (1996) Pelagic and sea ice microbial communities. In: Hofmann EE, Quetin LB (eds) Foundations for ecological research West of the Antarctic Peninsula R. M. Ross, Antarctic Res Ser 70:155–172

  • Garrison DL, Sullivan CW, Ackley SF (1986) Sea ice microbial communities in Antarctica. Biosciences 36(4):243–250

    Article  Google Scholar 

  • Garrison DL, Buck KR, Fryxell GA (1987) Algal assemblages in Antarctic pack ice and in ice-edge plankton. J Phycol 23:564–572

    Google Scholar 

  • Garrison DL, Close AR, Reimnitz E (1989) Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarct Sci 1(4):313–316

    Article  Google Scholar 

  • Gasol JM, del Giorgio PA, Duarte CM (1997) Biomass distribution in marine planktonic communities. Limnol Oceanogr 42:1353–1363

    CAS  Google Scholar 

  • Giani M, Berto D, Zangrando V, Castelli S, Sist P, Urbani R (2005) Chemical characterisation of different typologies of mucilaginous aggregates in the northern Adriatic Sea. Sci Total Environ 353:232–246

    Article  PubMed  CAS  Google Scholar 

  • Giesenhagen HC, Detmer AE, de Wall J, Weber A, Gradinger RR, Jochem FJ (1999) How are Antarctic planktonic microbial food webs and algal blooms affected by melting of sea ice? Microcosm simulations. Aquat Microb Ecol 20:183–201

    Article  Google Scholar 

  • Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282:2238–2241

    Article  PubMed  CAS  Google Scholar 

  • Granskog MA, Kaartokallio H, Shirasawa K (2003) Nutrients status of Baltic Sea ice—evidence for control by snow-ice formation, ice permeability and ice algae. J Geophysical Res 108(C8): 3253. doi: 10.1029/2002JC001386

    Google Scholar 

  • Grasshoff K, Erhard M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag-Chemie, Weinheim

    Google Scholar 

  • Grossi SM, Kottmeier ST, Sullivan CW (1984) Sea ice microbial communities. III. Seasonal abundance of microalgae and associated bacteria, McMurdo Sound, Antarctica. Microb Ecol 10:231–242

    Article  Google Scholar 

  • Grossmann S (1994) Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: a microautoradiographic study. Microb Ecol 28:1–18

    Article  CAS  Google Scholar 

  • Grossmann S, Dieckmann GS (1994) Bacterial standing stock, activity, and carbon production during formation and growth of sea ice in the Weddell Sea, Antarctica. Appl Environ Microbiol 60:2746–2753

    PubMed  CAS  Google Scholar 

  • Grossmann S, Gleitz M (1993) Microbial responses to experimental sea-ice formation, implications for the establishment of Antarctic sea-ice communities. J Exp Marine Biol Ecol 173:273–289

    Article  Google Scholar 

  • Guglielmo L, Carrada GC, Catalano G, Dell’Anno A, Fabiano M, Lazzara L, Mangoni O, Pusceddu A, Saggiomo V (2000) Structural and functional properties of sympagic communities in the annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 23:137–146

    Article  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Zohary T, Pollingher U (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Horner R, Ackley SF, Dieckmann GS, Gulliksen B, Hoshiai T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biol 12:417–427

    Article  Google Scholar 

  • Jeffries MO, Krouse HR, Sackinger WM, Serson HV (1989) Stable-isotope (18O/16O) tracing of fresh, brackish and sea ice in multiyear land-fast sea ice, Ellesmere Island, Canada. J Glaciol 35:9–16

    CAS  Google Scholar 

  • Joubert L-M, Wolfaardt GM, Botha A (2006) Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 52:187–197

    Article  PubMed  Google Scholar 

  • Kähler P, Bjornsen PK, Lochte K, Antia A (1997) Dissolved organic matter and its utilization by bacteria during spring in the Southern Ocean. Deep Sea Res II 44:341–353

    Article  Google Scholar 

  • Kattner G, Thomas DN, Haas C, Kennedy H, Dieckmann GS (2004) Surface ice and gap layers in Antarctic sea ice: highly productive habitats. Marine Ecol Prog Ser 277:1–12

    Article  Google Scholar 

  • Kepkay PF (2000) Colloids and the ocean carbon cycle. In: Wangersky P (ed) The handbook of environmental chemistry, vol 5. Part D: Marine chemistry. Springer, Berlin, pp 35–56

    Google Scholar 

  • Kottmeier ST, Sullivan CW (1990) Bacterial biomass and production in pack ice of Antarctic marginal ice edge zones. Deep Sea Res I 37:1311–1330

    Article  Google Scholar 

  • Kottmeier ST, Grossi SM, Sullivan CW (1987) Sea ice microbial communities. VIII. Bacterial production in annual sea ice of McMurdo Sound, Antarctica. Marine Ecol Prog Ser 35:175–186

    Article  Google Scholar 

  • Krembs C, Engel A (2001) Abundance and variability of microorganisms and transparent exopolymer particle across the ice–water interface of melting first-year sea ice in the Laptev Sea (Arctic). Marine Biol 138:173–185

    Article  Google Scholar 

  • Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Marine Biol Ecol 243:55–80

    Article  Google Scholar 

  • Krembs C, Mock T, Gradinger R (2001) A mesocosm study of physical–biological interactions in artificial sea ice: effects of brine channel surface evolution and brine movement on algal biomass. Polar Biol 24:356–364

    Article  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Artic winter ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res I 49:2163–2181

    Article  CAS  Google Scholar 

  • Lannuzel D, de Jong JTM, Schoemann V, Trevena A, Tison J-L, Chou L (2006) Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment. Anal Chim Acta 556(2):476–483

    Article  CAS  Google Scholar 

  • Lannuzel D, Schoemann V, de Jong J, Tison J-L, Chou L (2007) Distribution and biogeochemical behaviour of iron in East Antarctica Sea ice. Marine Chem 106(1):18–32

    Article  CAS  Google Scholar 

  • Lepparänta M, Manninen T (1988) The brine and gas content of sea ice with attention to low salinities and high temperatures. Finnish Institute Marine Research Internal Report, 88–82, Helsinki

  • Leventer A (2003) Particulate flux from sea ice in polar waters. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 303–332

    Google Scholar 

  • Lizotte MP (2003) The microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 184–210

    Google Scholar 

  • Maranger R, Pullin MJ (2003) Elemental complexation by dissolved organic matter in lakes: implications for Fe speciation and the bioavailability of Fe and P. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier, New York, pp 186–214

    Google Scholar 

  • Mari X, Burd A (1998) Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Marine Ecol Prog Ser 163:63–76

    Article  CAS  Google Scholar 

  • Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840

    Article  Google Scholar 

  • Mathot S, Becquevort S, Lancelot C (1992) Fate of sea-ice biota at the time of ice melting in the north-western part of the Weddell Sea. Polar Res 10:267–275

    Article  Google Scholar 

  • Meese DA (1989) The chemical and structural properties of sea ice in the southern Beaufort Sea. CRRELL Report 89–25. US Army Cold Region Research and Engineering Laboratory, Hanover, NH, p 144

  • Meiners K, Gradinger R, Fehling J, Civitarese G, Spindler M (2003) Vertical distribution of exopolymer particles in sea ice of the Fram Strait (Arctic) during autumn. Marine Ecol Prog Ser 248:1–13

    Article  CAS  Google Scholar 

  • Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat Microb Ecol 35:283–296

    Article  Google Scholar 

  • Meiners K, Krembs C, Gradinger R (2008) Exopolymer particles: microbial hotspots of enhanced bacterial activity in Arctic fast ice (Chukchi Sea). Aquat Microb Ecol 52:195–207

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    CAS  Google Scholar 

  • Millero FJ (1996) Chemical oceanography, 2nd edn edn. CRC Press, Boca Raton, p 469

    Google Scholar 

  • Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microb 7(5):605–619

    Article  CAS  Google Scholar 

  • Nelson DM, Brzezinski MA, Sigmon DE, Franck VM (2001) A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep Sea Res II 48:3973–3995

    Article  CAS  Google Scholar 

  • Ogawa H, Tanoue E (2003) Dissolved organic matter in oceanic waters. J Oceanogr 59:129–147

    Article  CAS  Google Scholar 

  • Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. Antarctic microbiology. Wiley-Liss, Wilmington, pp 167–218

    Google Scholar 

  • Papadimitriou S, Thomas DN, Kennedy H, Haas C, Kuosa H, Krell A, Dieckmann GS (2007) Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. Limnol Oceanogr 52(5):1809–1823

    CAS  Google Scholar 

  • Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Marine Ecol Prog Ser 192:1–11

    Article  CAS  Google Scholar 

  • Passow U, Alldredge AL (1995) Aggregation of a diatom bloom in a mesocosm—the role of transparent exopolymer particles (Tep). Deep Sea Res II 42:99–109

    Article  CAS  Google Scholar 

  • Perovich DK, Gow AJ (1996) A quantitative description of sea ice inclusions. J Geophys Res 101(8):18327–18343

    Article  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11:239–248

    Article  Google Scholar 

  • Riedel A, Michel C, Gosselin M (2006) Seasonal study of sea-ice exopolymeric substances (EPS) on the Mackenzie Shelf: implications for transport of sea-ice bacteria and algae. Aquat Microb Ecol 45:195–206

    Article  Google Scholar 

  • Riedel A, Michel C, Gosselin M, LeBlanc B (2007a) Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie shelf. Marine Ecol Prog Ser 342:55–67

    Article  CAS  Google Scholar 

  • Riedel A, Michel C, Gosselin M (2007b) Grazing of large-sized bacteria by sea-ice heterotrophic protists on the Mackenzie Shelf during the winter-spring transition. Aquat Microb Ecol 50:25–38

    Article  Google Scholar 

  • Sarthou G, Timmermans KR, Blain S, Tréguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42

    Article  CAS  Google Scholar 

  • Scharek R, Smetacek V, Fahrbach E, Gordon LI, Rohardt G, Moore S (1994) The transition from winter to early spring in the eastern Weddell Sea, Antarctica: plankton biomass and composition in relation to hydrography and nutrients. Deep Sea Res 41:1231–1250

    Article  CAS  Google Scholar 

  • Scott FJ, Davidson AT, Marchant HJ (2001) Grazing by the antarctic sea-ice ciliate Pseudocohnilembus. Polar Biol 24:127–131

    Article  Google Scholar 

  • Shen HT, Ackermann NL (1990) Wave-induced sediment enrichment in coastal ice covers. In: Ackley SF, Weeks WF (eds) Sea ice properties and processes, proceedings of the WF Weeks Sea ice symposium, CRREL Monograph, 90–1, American Society for testing and materials. pp 100–102

  • Simon M, Azam F (1989) Protein content and protein synthesis rate of planktonic marine bacteria. Marine Ecol Prog Ser 51:201–213

    Article  CAS  Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Sommer U (1986) Nitrate and silicate-competition among Antarctic phytoplankton. Marine Biol 91:345–351

    Article  CAS  Google Scholar 

  • Spindler M, Dieckmann GS, Lange MA (1990) Seasonal and geographic variations in sea ice community structure of the Weddell Sea, Antarctica. In: Kerry KR, Hempel G (eds) Antarctic ecosystem. Ecological change and conservation. Springer, Berlin, pp 129–135

    Google Scholar 

  • Stewart FJ, Fritsen CH (2004) Bacteria–algae relationships in Antarctic Sea ice. Antarct Sci 16(2):143–156

    Article  Google Scholar 

  • Sugimura Y, Suzuki Y (1988) A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Marine Chem 24:105–131

    Article  CAS  Google Scholar 

  • Taylor WD (1978) Growth response of ciliate protozoa to the abundance of their bacterial prey. Microb Ecol 4:207–214

    Article  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644

    Article  PubMed  CAS  Google Scholar 

  • Thomas DN, Papadimitriou S (2003) Biogeochemistry of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 267–332

    Google Scholar 

  • Thomas DN, Lara RJ, Eicken H, Kattner G, Skoog A (1995) Dissolved organic matter in Arctic multi-year sea ice during winter: major components and relationship to ice characteristics. Polar Biol 15:477–483

    Article  Google Scholar 

  • Thomas DN, Lara RJ, Haas C, Schnack-Schiel SB, Dieckmann GS, Kattner G, Nöthig E-M, Mizdalski E (1998) Biological soup within decaying summer sea ice in the Bellingshausen Sea. Antarct Res Ser 73:161–171

    Google Scholar 

  • Tison J-L, Lancelot C, Chou L, Lannuzel D, de Jong J, Schoemann V, Becquevort S, Trevena A, Verbeke V, Lorrain R, Delille B (2005) Biogéochimie de la glace de mer dans la perspective des changements climatiques. Annual report ARC 2003–2004, pp 71

  • Tison J-L, Worby A, Delille B, Brabant F, Papadimitriou S, Thomas D, de Jong J, Lannuzel D, Haas C (2008) Thermodynamic evolution of decaying summer first-year sea ice at ISPOL (Western Weddell Sea, Antarctica). Deep Sea Res II 55:975–987

    Article  Google Scholar 

  • Utermölh H (1958) Zur Vervelkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Verein Theor Angew Limnol 9:1–38

    Google Scholar 

  • Watson SW, Novitsky TJ, Quinby HL, Valois FW (1977) Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol 33:940–946

    PubMed  CAS  Google Scholar 

  • Weeks WF, Ackley SF (1986) The growth, structure and properties of sea ice. In: Untersteiner N (ed) The geophysics of sea ice. NATO ASI Series B, Physics. Martinus Nyhoff, Dordrecht 146:9–164

  • Weissenberger J, Grossmann S (1998) Experimental formation of sea ice: importance of water circulation and wave action for incorporation of phytoplankton and bacteria. Polar Biol 20:178–188

    Article  Google Scholar 

  • Wetherbee R, Lind JL, Burke J (1998) The forst kiss: establishment and control of initial adhesion of raphid diatoms. J Phycol 34:9–15

    Article  Google Scholar 

  • Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytine by fluorescence. Deep Sea Res 10:221–231

    CAS  Google Scholar 

  • Zwally HJ, Parkinson CL, Comiso JC (1983) Variability of Antarctic Sea ice and changes in carbon dioxide. Science 220:1005–1012

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Australian Antarctic Division, especially Ian Allison (Expedition Leader) and Rob Massom (Chief Scientist), for their invitation to participate in the “ARISE in the East” endeavor. We are also grateful to the captain and crew of the RV Aurora Australis for their logistic assistance throughout the duration of the cruise. Special thanks are due to Anne Trevena for her great help in organizing the cruise, ice core subsampling and salinity measurements. The support from Bruno Delille for field assistance is greatly acknowledged. This work was funded by the Belgian French Community (ARC contract no. 2/07-287) and by the Belgian Federal Science Policy Office (contracts SD/CA/03A&B). This is also a contribution to the European Network of Excellence EUR-OCEANS (contract no. 511106-2) and Integrated Project CarboOcean (contract no. 511176-2). The present study is a Belgian input to the SOLAS international research initiative. I. Dumont benefits from a FRIA (Fonds pour la Recherche en Industries Agronomiques) PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Becquevort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becquevort, S., Dumont, I., Tison, JL. et al. Biogeochemistry and microbial community composition in sea ice and underlying seawater off East Antarctica during early spring. Polar Biol 32, 879–895 (2009). https://doi.org/10.1007/s00300-009-0589-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0589-2

Keywords

Navigation