Skip to main content
Log in

Phylogenetic diversity of Gram-positive bacteria cultured from Antarctic deep-sea sponges

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Gram-positive bacteria, specifically actinobacteria and members of the order Bacillales, are well-known producers of important secondary metabolites. Little is known about the diversity of Gram-positive bacteria associated with Antarctic deep-sea sponges. In this study, cultivation-based approaches were applied to investigate the Gram-positive bacteria associated with the Antarctic sponges Rossella nuda, Rossella racovitzae (Porifera: Hexactinellida), and Myxilla mollis, Homaxinella balfourensis, Radiella antarctica (Porifera: Demospongiae). In total, 46 Gram-positive strains were cultured. Phylogenetic analysis revealed that 24 strains were affiliated with the Actinobacteria, including six genera Streptomyces, Nocardiopsis, Pseudonocardia, Dietzia, Brachybacterium, and Brevibacterium. The other 22 strains were affiliated with the Firmicutes, and among them two (V17-1 and V179-1) only shared 92–95% 16S rRNA gene sequence identity with the nearest type strain. To our knowledge, this is the first report on the isolation of strains belonging to genera Dietzia and Brevibacterium from Antarctic sponges. All of the 46 strains were PCR screened for genes encoding polyketide synthases (PKS), and a selection of 36 isolates were used in subsequent bioassay analyses. Eighty-eight percentage of the isolates that possess a PKS gene were active against at least one test organism. The study confirms the existence of diverse bacteria in Antarctic sponges and their potential for producing active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24

    Article  PubMed  CAS  Google Scholar 

  • Barthel D, Tendal OS (1994) Antarctic hexactinellida. In: Wägele JW, Sieg J (eds) Synopses of the Antarctic benthos, vol 6. Koeltz Scientific Books, Koenlgstein, p 154

  • Barthel D, Gutt J, Tendal OS (1991) New information on the biology of Antarctic deep-water sponges derived from underwater photography. Mar Ecol Prog Ser 69:303–307

    Article  Google Scholar 

  • Bavestrello G, Arillo A, Calcinai B, Cattaneo-Vietti R, Cerrano C, Gaino E et al (2000) Parasitic diatoms inside antarctic sponges. Biol Bull 198:29–33

    Article  PubMed  CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  Google Scholar 

  • Brandt A, Brix S, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, Mesel I De, Diaz R, Gillan D, Hilbig B, Howe J, Janussen D, Kaiser S, Linse K, Malyutina M, Brandao S, Pawlowski J, Raupach M, Gooday A, vanreusel A (2007) The Southern Ocean deep sea: first insights into biodiversity and biogeography. Nature 447:307–311 (+Suppl.)

  • Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275

    Article  PubMed  CAS  Google Scholar 

  • Burja AM, Hill RT (2001) Microbial symbionts of the Australian Great Barrier Reef sponge, Candidaspongia flabellate. Hydrobilolgia 461:41–47

    Article  Google Scholar 

  • Cattaneo-Vietti R, Bavestrello G, Cerrano C, Gaino E, Mazzella L, Pansini M, Sarà M (1999) The role of sponges in the Terra Nova ecosystem. In: Faranda F, Guglielmo L, Ianora A (eds) Ross Sea ecology italiantartide expeditions (1987–1995). Springer, New York, pp 539–549

    Google Scholar 

  • Cerrano C, Arillo A, Bavestrello G, Calcinai B, Cattaneo-Vietti R, Penna A (2000a) Diatom invasion in the antarctic hexactinellid sponge Scolymastra joubini. Polar Biol 23:441–444

    Article  Google Scholar 

  • Cerrano C, Bavestrello G, Calcinai B, Cattaneo-Vietti R, Sarà A (2000b) Asteroids eating sponges from Tethys Bay, East Antarctica. Antarctic Sci 12:425–426

    Article  Google Scholar 

  • Chun J (1995) Computer-assisted classification and identification of actinomycetes. Ph.D Thesis, Univ Newcastle, Newcastle upon Tyne, UK

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  PubMed  CAS  Google Scholar 

  • Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS, August PR, Nalin R, Guerineau M, Jeannin P, Simonet P, Pernodet JL (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69:49–55

    Article  PubMed  CAS  Google Scholar 

  • Dayton PK (1989) Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:1484–1486

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, WA, USA

  • Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K, Bertrand H, Vogel TM, Perriere G, Simonet P, Nalin R (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol 70:5522–5527

    Article  PubMed  CAS  Google Scholar 

  • Gontang EA, Fenical W, Paul R, Jensen PR (2007) Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73:3272–3282

    Article  PubMed  CAS  Google Scholar 

  • Gontang EA, Gaudêncio SP, Fenical W, Jensen PR (2010) Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria. Appl Environ Microbiol 76:2487–2499

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Williams ST, Mordarski M (1983) Introduction to and importance of actinomycetes. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of the actinomycetes. Academic Press Inc., London, pp 1–6

    Google Scholar 

  • Gordon DA, Priscu J, Giovannoni S (2000) Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb Ecol 39:197–202

    PubMed  Google Scholar 

  • Governal RA, Yahya MT, Gerba CP, Shadman F (1991) Oligotrophic bacteria in ultra-pure water systems: media selection and process component evaluations. J Ind Microbiol Biotechnol 8:223–227

    Google Scholar 

  • Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF, Stoehr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In: Mueller WEG (ed) Sponges (Porifera). Springer, Heidelberg, pp 35–57

    Chapter  Google Scholar 

  • Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396

    Article  PubMed  CAS  Google Scholar 

  • Janussen D (2006) Collection of Porifera (sponges) during ANDEEP III. Rep Polar Mar Res 533:174–178

    Google Scholar 

  • Janussen D (2008) Diversity of sponges west and east of the Antarctic Peninsula. Rep Polar Mar Res 569:41–48 (hdl:10013/epic.28679)

    Google Scholar 

  • Janussen D, Tendal OS (2007) Diversity and distribution of porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-Sea Res II 54(16/17):1864–1875

    Google Scholar 

  • Jiang SM, Sun W, Chen MJ, Dai SK, Zhang L, Liu YH, Lee KJ, Li X (2007) Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Antonie van Leeuwenhoek 92:405–416

    Article  PubMed  CAS  Google Scholar 

  • Jiang SM, Li X, Zhang L, Sun W, Dai SK, Xin LW, Liu YH, Lee KJ (2008) Cutlurable actinobacteria isolated from marine sponge Iotrochota sp. Mar Biol 153:945–952

    Article  CAS  Google Scholar 

  • Joseph SJ, Hugenholtz P, Sangwan P, Osbone CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215

    Article  PubMed  CAS  Google Scholar 

  • Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ, Bourke MB, Rea MC, O’Connor PM, Ross RP, Hill C, O’Gara F, Marchesi JR, Dobson ADW (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol 11:384–396

    Article  PubMed  CAS  Google Scholar 

  • Ketela MM, Halo L, Manukka E, Hakala J, Mantsala P, Ylihonko K (2002) Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl Environ Microbiol 68:4472–4479

    Article  Google Scholar 

  • Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the ‘Salinospora’ group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7(4):509–518

    Article  PubMed  CAS  Google Scholar 

  • Lafi FF, Garson MJ, Fuerst JA (2005) Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50:213–220

    Article  PubMed  CAS  Google Scholar 

  • Laiz L, Pinãr G, Lubitz W, Saiz-Jimenez C (2003) Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ Microbiol 5:72–74

    Article  PubMed  Google Scholar 

  • Lee YK, Kim HW, Liu CL, Lee HK (2003) A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods 52:245–250

    Article  PubMed  CAS  Google Scholar 

  • Li SK, Xiao X, Yin XB, Wang FP (2006) Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica. Extremophiles 10:461–467

    Article  PubMed  CAS  Google Scholar 

  • Linse K, Brandt A, Bohn J, Danis B, De Broyer C, Ebbe B, Heterier V, Janussen D, López González PJ, Schüller M, Schwabe E, Thomson MRA (2007) Macro- and megabenthic assemblages in the bathyal and abyssal Weddell Sea (Southern Ocean). Deep-Sea Res II 54(16/17):1848–1863

  • Liu W, Ahlert J, Gao Q, Pienkowski EW, Shen B, Thorson JS (2003) Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model. Proc Natl Acad Sci 100:11959–11963

    Article  PubMed  CAS  Google Scholar 

  • Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable Actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek 87:11–18

    Article  PubMed  Google Scholar 

  • Mangano S, Michaud L, Caruso C, Brilli M, Bruni V, Fani R, Giudice AL (2009) Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Res Microbiol 160:27–37

    Article  PubMed  CAS  Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ, Rob WMVS (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Bilo 45:359–368

    Article  Google Scholar 

  • Merriman PR, Price RD, Baker FK, Kollmorgen JF, Piggott T, Ridge ED (1977) Effect of Bacillus and Streptomyces spp. applied to seed. In: Bruehl E (ed) Biology and control of soil-borne plant pathogens. American Phytopathological Society, St. Paul, pp 130–133

    Google Scholar 

  • Metsä-Ketelä M, Salo V, Halo L, Hautala A, Hakala J, Mäntsälä P, Ylihonko K (1999) An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett 180:1–6

    Article  PubMed  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    Article  PubMed  CAS  Google Scholar 

  • Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponge. Antonie van Leeuwenhoek 87:29–36

    Article  PubMed  CAS  Google Scholar 

  • Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    PubMed  CAS  Google Scholar 

  • Muscholl-Silberhorn A, Thiel V, Imhoff JF (2008) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb Ecol 55:94–106

    Article  PubMed  Google Scholar 

  • Nold SC, Kopczynski ED, Ward DM (1996) Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat. Appl Environ Microbiol 62:3917–3921

    PubMed  CAS  Google Scholar 

  • Pathom-aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 56:1233–1237

    Article  PubMed  CAS  Google Scholar 

  • Plotkin AS, Janussen D (2008) Polymastiidae and Suberitidae (Porifera: Demospongiae: Hadromerida) of the deep Weddell Sea, Antarctic. Zootaxa 1866:95–135

    Google Scholar 

  • Priest FG (1989) Products and applications. In: Harwood CR (ed) Bacillus. Plenum Press, New York, pp 293–320

    Google Scholar 

  • Radwan M, Hanora A, Zan J, Mohamed NM, Abo-Elmatty DM, Abou-El-Ela SD, Hill RT (2010) Bacterial community analyses of two Red Sea sponges. Mar Biotechnol 12:350–360

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach A-L, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418

    PubMed  CAS  Google Scholar 

  • Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schaal KP (1977) Nocardia, actinomadura and streptomyces. In: Seligson D, von Graevenitz A (eds) CRC handbook series in clinical laboratory science, section E, clinical microbiology. CRC Press, Cleveland, pp 131–158

  • Stevens H, Brinkhoff T, Rink B, Vollmers J, Simon M (2007) Diversity and abundance of gram positive bacteria in a tidal flat ecosystem. Environ Microbiol 9:1810–1822

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Dai SK, Jiang SM, Wang GH, Liu GH, Wu HB, Li X (2010) Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie van Leeuwenhoek 98:65–75

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Takahashi K, Okuda T, Komatsubara S (1998) Selective isolation of Actinobispora on gellan gum plates. Can J Microbiol 44:1–5

    CAS  Google Scholar 

  • Tabares P, Pimentel-Elardo SM, Schirmeister T, Hünig T, Hentschel U (2011) Anti-protease and immunomodulatory activities of bacteria associated with Caribbean sponges. Mar Biotechnol. doi:10.1007/s10126-010-9349-0

  • Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Mohamed NM, Enticknap JJ, Hill RT (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 24:4876–4882

    Article  Google Scholar 

  • To Isaacs L, Kan J, Nguyen L, Videau P, Anderson MA, Wright TL, Hill RT (2009) Comparison of the bacterial communities of wild and captive sponge Clathria prolifera from the Chesapeake Bay. Mar Biotechnol 11:758–770

    Article  Google Scholar 

  • Vickers JC, Williams ST, Ross GW (1984) A taxonomic approach to selective isolation of streptomycetes from soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic Press, Orlando, pp 553–561

    Google Scholar 

  • Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha-Proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  • Webster NS, Wilson K, Blackall LL, Hill RT (2001a) Phylogentic diversity of the bacterial communities associated with the marine sponge, Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Watts JEM, Hill RT (2001b) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote sequences from a Great Barrier Reef sponge. Mar Biotech 3:600–608

    Article  CAS  Google Scholar 

  • Webster NS, Negri AP, Munro MMHG, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Baceriol 173:697–703

    CAS  Google Scholar 

  • Zhang HT, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek 90:159–169

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Zhang W, Jin Y, Jin MF, Yu XJ (2008) A comparative study on the phylogenetic diversity of culturable actinomycetes isolated from five marine sponge species. Antonie van Leeuwenhoek 93:241–248

    Article  PubMed  CAS  Google Scholar 

  • Zhu P, Li QZ, Wang GY (2008) Unique microbial signatures of the alien Hawaiian marine sponge Suberites zeteki. Microb Ecol 55:406–414

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

DJ thanks the Deutsche Forschungsgemeinschaft (DFG) for financial support to her research project on the Phylogeny and diversification history of Antarctic Porifera (JA 1063/14-1, 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, Y., Kanagasabhapathy, M., Janussen, D. et al. Phylogenetic diversity of Gram-positive bacteria cultured from Antarctic deep-sea sponges. Polar Biol 34, 1501–1512 (2011). https://doi.org/10.1007/s00300-011-1009-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1009-y

Keywords

Navigation