Skip to main content
Log in

Bacterial Community Analyses of Two Red Sea Sponges

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Red Sea sponges offer potential as sources of novel drugs and bioactive compounds. Sponges harbor diverse and abundant prokaryotic communities. The diversity of Egyptian sponge-associated bacterial communities has not yet been explored. Our study is the first culture-based and culture-independent investigation of the total bacterial assemblages associated with two Red Sea Demosponges, Hyrtios erectus and Amphimedon sp. Denaturing gradient gel electrophoresis fingerprint-based analysis revealed statistically different banding patterns of the bacterial communities of the studied sponges with H. erectus having the greater diversity. 16S rRNA clone libraries of both sponges revealed diverse and complex bacterial assemblages represented by ten phyla for H. erectus and five phyla for Amphimedon sp. The bacterial community associated with H. erectus was dominated by Deltaproteobacteria. Clones affiliated with Gammaproteobacteria were the major component of the clone library of Amphimedon sp. About a third of the 16S rRNA gene sequences in these communities were derived from bacteria that are novel at least at the species level. Although the overall bacterial communities were significantly different, some bacterial groups, including members of Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, and Actinobacteria, were found in both sponge species. The culture-based component of this study targeted Actinobacteria and resulted in the isolation of 35 sponge-associated microbes. The current study lays the groundwork for future studies of the role of these diverse microbes in the ecology, evolution, and development of marine sponges. In addition, our work provides an excellent resource of several candidate bacteria for production of novel pharmaceutically important compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-El-Haleem D, Moawad H, Zaki EA, Zaki S (2002) Molecular characterization of phenol-degrading bacteria isolated from different Egyptian ecosystems. Microb Ecol 43:217–224

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Burton M (1926) Report on the sponges (zoological results of the Suez Canal expedition). T Zool Soc Lond 22:71–83

    Article  Google Scholar 

  • Burton M (1937) Supplement to the littoral fauna of the Krusadai Island in the gulf of Manaar, Porifera. Bull Madras Govt Mus:1–58

  • Burton M (1952) The Mahanine expedition to the Gulf of Aqaba, sponges. Bull Br Mus Nat Hist/Zool 1:163–174

    Google Scholar 

  • Burton M (1959) Sponges. Scientific reports of the John Murray expedition 1933–34. London. Brit Mus Nat Hist 10:151–281

    Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  PubMed  CAS  Google Scholar 

  • Edlund A, Hardeman F, Jansson JK, Sjoling S (2008) Active bacterial community structure along vertical redox gradients in Baltic Sea sediment. Environ Microbiol 10:2051–2063

    Article  PubMed  CAS  Google Scholar 

  • Emura C, Higuchi R, Miyamoto T, Soest RWMV (2005) Amphimelibiosides A–F, six new ceramide dihexosides isolated from a Japanese marine sponge Amphimedon sp. J Org Chem 70:3031–3038

    Article  PubMed  CAS  Google Scholar 

  • Enticknap JJ, Thompson R, Peraud O, Lohr JE, Hamann MT, Hill RT (2005) Molecular analysis of a Florida Keys sponge: implications for natural products discovery. Mar Biotechnol 6:S288–S293

    Google Scholar 

  • Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum Poribacteria in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  • Hardoim CCP, Costa R, Araujo F, Hadju E, Peixoto R, Miranda E, Lins U, Rosado AS, Van Elsas JD (2009) Microbial diversity in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl Environ Microbiol 75:3331–3343

    Article  PubMed  CAS  Google Scholar 

  • He LM, Li Z, Wu J, Hu Y, Jiang Q (2006) Revelation and phylogenetic analysis of the predominant bacterial community associated with sponges in the South China Sea based on PCR-DGGE fingerprints. Wei Sheng Wu Xue Bao 46:487–491

    PubMed  Google Scholar 

  • Heck KL, Van Belle G, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecol 56:1459–1461

    Article  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  • Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol 148:1221–1230

    Article  Google Scholar 

  • Hurlbet SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecol 52:577–586

    Article  Google Scholar 

  • Ilan M, Gugel J, Van Soest RWM (2004) Taxonomy, reproduction and ecology of new and known Red Sea sponges. Sarsia 89:388–410

    Article  Google Scholar 

  • Imhoff JF, Stöhr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. Prog Mol Subcell Biol 37:35–57

    PubMed  CAS  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Sun W, Chen M, Dai S, Zhang L, Liu Y, Lee KJ, Li X (2007) Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Antonie Van Leeuwenhoek 92:405–416

    Article  PubMed  CAS  Google Scholar 

  • Keller C (1889) Die Spongienfauna des rothen Meeres. 1. Hälfte. Z Wiss Zool 48:311–405

    Google Scholar 

  • Keller C (1891) Die Spongienfauna des rothen Meeres. 2. Hälfte. Z Wiss Zool 52:294–368

    Google Scholar 

  • Kelly-Borges M, Vacelet J (1995) A revision of Diacarnus Burton and Negombata de Laubenfels (Demospongiae:Latrunculiidae) with descriptions from the west central Pacific and the Red Sea. Mem Queensl Mus 38:477–503

    Google Scholar 

  • Kelman D, Kashman Y, Rosenberg E, Ilan M, Ifrach I, Loya Y (2001) Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquat Microb Ecol 24:9–16

    Article  Google Scholar 

  • Kennedy J, Codling CE, Dobson ADW, Jones BV, Marchesi JR (2008) Diversity of bacteria associated with an Irish marine sponge, Haliclona simulans and identification of polyketide synthase genes from the sponge metagenome. Environ Microbiol 10:1888–1902

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:8305–8308

    Article  Google Scholar 

  • Koren O, Rosenberg E (2008) Bacteria associated with the bleached and cave coral Oculina patagonica. Microb Ecol 55:523–529

    Article  PubMed  Google Scholar 

  • Lazzarini AL, Cavaletti GT, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 78:99–405

    Article  Google Scholar 

  • Lévi C (1965) Spongiaires recoltés par l’ expedition israélienne dans le sud de la mer rouge. Bull Sea Fisheries Res Sta Haifa 39:3–27

    Google Scholar 

  • Lévi C (1991) Lithistid sponges from the Norfolk Rise, recent and Mesozoic genera. In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer, Berlin

    Google Scholar 

  • Li Z, He L, Miao X (2007) Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr Microbiol 55:465–472

    Article  PubMed  CAS  Google Scholar 

  • Li ZY, Liu Y (2006) Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43:410–416

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software package environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga S, Miyata Y, Soest RWMV, Fusetani N (2004) Tetradehydrohalicyclamine A and 22-hydroxyhalicyclamine A, new cytotoxic bis-piperidine alkaloids from a marine sponge Amphimedon sp. J Nat Prod 67:1758–1760

    Article  PubMed  CAS  Google Scholar 

  • Meyer B, Kuever J (2008) Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16 S rRNA, aprA, and amoA gene analysis. Microb Ecol 56:306–321

    Article  PubMed  CAS  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    Article  PubMed  CAS  Google Scholar 

  • Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT (2008) Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol 74:4133–4143

    Article  PubMed  CAS  Google Scholar 

  • Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie Van Leeuwenhoek 87:29–36

    Article  PubMed  CAS  Google Scholar 

  • Muscholl-Silberhorn A, Thiel V, Imhoff JF (2008) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean sea. Microb Ecol 55:94–106

    Article  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227

    Article  PubMed  CAS  Google Scholar 

  • Pile AJ, Patterson MR, Witman JD (1996) In situ grazing on plankton < 10 µm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser 141:95–102

    Article  Google Scholar 

  • Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach AL, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418

    PubMed  CAS  Google Scholar 

  • Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20:85–91

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Row RWH (1909) Report on the sponges, collected by Mr. Cyril Crossland in 1904–5. Part I. Calcarea. J Linnean Soc (Zool) 31:181–214

    Google Scholar 

  • Row RWH (1911) Report on the sponges, collected by Mr. Cyril Crossland in 1904–5. Part II. Non-Calcarea. J Linnean Soc (Zool) 31:287–400

    Article  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  PubMed  CAS  Google Scholar 

  • Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez J (2005) A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28:242–264

    Article  PubMed  CAS  Google Scholar 

  • Sharp KH, Eam B, Faulkner DJ, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629

    Article  PubMed  CAS  Google Scholar 

  • Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, Martiny JB (2008) It's all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210

    Article  PubMed  Google Scholar 

  • Sundquist A, Bigdeli S, Jalili R, Druzin ML, Waller S, Pullen KM, El-Sayed YY, Taslimi MM, Batzoglou S, Ronaghi M (2007) Bacterial flora-typing with targeted, chip-based Pyrosequencing. BMC Microbiol 7:108

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Kubota T, Fromont J, Kobayashi J (2009) Zamamidines a and B, new manzamine alkaloids from the sponge Amphimedon species. Org Lett 11:21–24

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Thakur NL, Anil AC (2000) Antibacterial activity of the sponge Ircinia ramosa: importance of its surface-associated bacteria. J Chem Ecol 26:57–71

    Article  CAS  Google Scholar 

  • Thiel V, Imhoff JF (2003) Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomol Eng 20:421–423

    Article  PubMed  CAS  Google Scholar 

  • Thiel V, Leininger S, Schmaljohann R, Brümmer F, Imhoff JF (2007) Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb Ecol 54:101–111

    Article  PubMed  Google Scholar 

  • Topsent E (1892) Éponges de la mer rouge. Mem Soc Zool Fr 5:21–29

    Google Scholar 

  • Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446

    Article  PubMed  CAS  Google Scholar 

  • Vacelet J, Al Sofyani A, Al Lihaibi S, Kornprobst JM (2001) A new haplosclerid sponge species from the Red Sea. J Mar Biol Assn UK 81:943–948

    Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Negri AP, Munro MM, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier reef sponges. Microb Ecol 7:13–21

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Wellington EM, Vickers JC, Alderson G, Sneath PH, Sackin MJ, Mortimer AM (1983) A probability matrix for identification of some Streptomycetes. J Gen Microbiol 129:1815–1830

    PubMed  CAS  Google Scholar 

  • Youssef DTA (2005) Hyrtioerectines A–C, cytotoxic alkaloids from the Red Sea sponge Hyrtios erectus. J Nat Prod 68:1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Breitbart M, McNairnie P, Rohwer F (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:57

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie Van Leeuwenhoek 90:159–169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the U.S.–Egypt Science and Technology Joint Fund in cooperation with the USDA and Ministry of Scientific Research in Egypt under Project (BIO8-002-011). The authors thank Matthew Anderson and Arnheidur Eythorsdottir for their help with various aspects of this work. Michelle Kelly at the National Institute of Water and Atmospheric Research (NIWA) Ltd., Auckland, New Zealand is thanked for sponge identifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell T. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radwan, M., Hanora, A., Zan, J. et al. Bacterial Community Analyses of Two Red Sea Sponges. Mar Biotechnol 12, 350–360 (2010). https://doi.org/10.1007/s10126-009-9239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9239-5

Keywords

Navigation