Skip to main content

Advertisement

Log in

Unique Microbial Signatures of the Alien Hawaiian Marine Sponge Suberites zeteki

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Invasive species poses a threat to the world’s oceans. Alien sponges account for the majority of introduced marine species in the isolated Hawaiian reef ecosystems. In this study, cultivation-dependent and cultivation-independent techniques were applied to investigate microbial consortia associated with the alien Hawaiian marine sponge Suberites zeteki. Its microbial communities were diverse with representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, Bacteroidetes, Chlamydiae, Planctomycetes, and Cyanobacteria. Specifically, the genus Chlamydia was identified for the first time from marine sponges, and two genera (Streptomyces and Rhodococcus) were added to the short list of culturable actinobacteria from sponges. Culturable microbial communities were dominated by Bacillus species (63%) and contained actinobacterial species closely affiliated with those from habitats other than marine sponges. Cyanobacterial clones were clustered with free-living cyanobacteria from water column and other environmental samples; they show no affiliation with other sponge-derived cyanobacteria. The low sequence similarity of Planctomycetes, Chlamydiae, and α-Proteobacteria clones to other previously described sequences suggested that S. zeteki may contain new lineages of these bacterial groups. The microbial diversity of S. zeteki was different from that of other studied marine sponges. This is the first report on microbial communities of alien marine invertebrate species. For the first time, it provides an insight into microbial structure within alien marine sponges in the Hawaiian marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  PubMed  CAS  Google Scholar 

  2. Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Pol 27:313–323

    Article  Google Scholar 

  3. Cheshire AC, Wilkinson CR (1991) Modelling the photosynthetic production by sponges on Davies Reef Great Barrier Reef Australia. Mar Biol 109:13–18

    Article  Google Scholar 

  4. Coles SL, Eldredge LG (2002) Nonindigenous species introductions on coral reefs: a need for information. Pac Sci 56:191–209

    Article  Google Scholar 

  5. De Laubenfels MW (1950) The sponges of Kaneohe Bay, Oahu. Pac Sci 4:3–36

    Google Scholar 

  6. Eldredge LG, Carlton FT (2002) Hawaiian marine bioinvasions: a preliminary assessment. Pac Sci 56:211–212

    Article  Google Scholar 

  7. Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72:3724–3732

    Article  PubMed  CAS  Google Scholar 

  8. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  9. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113

    Article  CAS  Google Scholar 

  10. Fromont J (1999) Reproduction of some Demosponges in a temperate Australian shallow water habitat. In: Proc 5th International Sponge Symposium, vol 44, pp 175–183

  11. Hentschel U, Fieseler L, Wehrl A, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Mueller WEG (ed) Sponges (Porifera). Springer, Heidelberg, Germany, pp 59–88

    Google Scholar 

  12. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  13. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  PubMed  CAS  Google Scholar 

  14. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  15. Hill RT (2004) Microbes from marine sponges: A treasure trove of biodiversity for natural products discovery. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, DC, pp 177–190

    Google Scholar 

  16. Imhoff JF, Stoehr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In: Mueller WEG (ed) Sponges (Porifera). Springer, Heidelberg, Germany, pp 35–57

    Google Scholar 

  17. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  18. Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the ‘Salinospora’ group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7:509–518

    Article  PubMed  CAS  Google Scholar 

  19. Kimmerer WJ, Gartside E, Orsi JJ (1994) Predation by an introduced clam as the likely cause of substantial declines in zooplankton of San Francisco Bay. Mar Ecol Prog Ser 113:81–93

    Article  Google Scholar 

  20. Lafi FF, Garson MJ, Fuerst JA (2005) Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50:213–220

    Article  PubMed  CAS  Google Scholar 

  21. Lee E-Y, Lee HK, Lee YK, Sim CJ, Lee J-H (2003) Diversity of symbiotic archaeal communities in marine sponges from Korea. Biomol Eng 20:299–304

    Article  PubMed  CAS  Google Scholar 

  22. Michaud L, Di Cello F, Brilli M, Fani R, Lo Giudice A, Bruni V (2004) Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea, Antarctica). FEMS Microbiol Lett 230:63–71

    Article  PubMed  CAS  Google Scholar 

  23. Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek 87:29–36

    Article  PubMed  CAS  Google Scholar 

  24. Olson JB, McCarthy PJ (2005) Associated bacterial communities of two deep-water sponges. Aquat Microb Ecol 39:47–55

    Article  Google Scholar 

  25. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    PubMed  CAS  Google Scholar 

  26. Preston CM, Wu KY, Molinski TF, Delong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge—Cenarchaeum symbiosum gen nov, sp, nov. Proc Natl Acad Sci USA 93:6241–6246

    Article  PubMed  CAS  Google Scholar 

  27. Roose-Amsaleg CL, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18:47–60

    Article  Google Scholar 

  28. Sarma AS, Daum T, Muller WEG (1993) Secondary metabolites from marine sponges. Ullstein Mosby, Berlin

    Google Scholar 

  29. Schmitz DC, Simberloff D (1997) Biological invasions: a growing threat. Issues Sci Technol 13:33–41

    Google Scholar 

  30. Steindler L, Huchon D, Avni A, Ilan M (2005) 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71:4127–4131

    Article  PubMed  CAS  Google Scholar 

  31. Swofford DL (2002) PAUP: phylogenetic analysis using parsimony and other programs (4.0b10 edn.). Sinauer, Sunderland, MA

    Google Scholar 

  32. Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  33. Taylor MW, Schupp PJ, Nys DR, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 73:419–433

    Article  Google Scholar 

  34. Thakur NL, Anil AC, Mueller WEG (2004) Culturable epibacteria of the marine sponge Ircinia fusca: temporal variations and their possible role in the epibacterial defense of the host. Aquat Microb Ecol 37:295–304

    Article  Google Scholar 

  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  36. Usher KM, Fromont J, Sutton DC, Toze S (2004) The biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediterranean. Microb Ecol 48:167–177

    Article  PubMed  CAS  Google Scholar 

  37. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  38. Vogel S (1977) Current induced flow through living sponges in nature. Proc Natl Acad Sci USA 74:2069–2071

    Article  PubMed  CAS  Google Scholar 

  39. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotech 33:545–551

    Article  CAS  Google Scholar 

  40. Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha-Proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  41. Webster NS, Negri AP, Munro M, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  42. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  43. Wichels A, Wuertz S, Doepke H, Schuett C, Gerdts G (2006) Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol Ecol 56:102–118

    Article  PubMed  CAS  Google Scholar 

  44. Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219:410–412

    Article  PubMed  Google Scholar 

  45. Wilkinson CR, Garrone R (1980) Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In: Smith DC, Tiffon Y (eds) Nutrition of lower metazoa. Pergamon, Oxford, pp 157–161

    Google Scholar 

  46. Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef Australia sponges. Microb Ecol 7:13–22

    Article  Google Scholar 

Download references

Acknowledgments

We thank L. Zhang for assistance on phylogenetic analysis and D. Henderson for suggestions to greatly improve this manuscript. This work is funded by NOAA grant NA04OAR4600196 and University of Hawaii Sea Grant under institutional grants NA05OAR4171048 and NA16RG2254. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subagencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, P., Li, Q. & Wang, G. Unique Microbial Signatures of the Alien Hawaiian Marine Sponge Suberites zeteki . Microb Ecol 55, 406–414 (2008). https://doi.org/10.1007/s00248-007-9285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9285-3

Keywords

Navigation