Skip to main content

Advertisement

Log in

Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Biological characteristics of ice-associated algal communities were studied in Darnley Bay (western Canadian Arctic) during a 2-week period in July 2008 when the landfast ice cover had reached an advanced stage of melt. We found two distinct and separate algal communities: (1) an interior ice community confined to brine channel networks beneath white ice covers; and (2) an ice melt water community in the brackish waters of both surface melt ponds and the layer immediately below the ice cover. Both communities reached maximum chlorophyll a concentrations of about 2.5 mg m−3, but with diatoms dominating the interior ice while flagellates dominated the melt water community. The microflora of each community was diverse, containing both unique and shared algal species, the latter suggesting an initial seeding of the ice melt water by the bottom ice community. Absorption characteristics of the algae indicated the presence of mycosporine-like amino acids (MAAs) and carotenoid pigments as a photoprotective strategy against being confined to high-light near-surface layers. Although likely not contributing substantially to total annual primary production, these ice-associated communities may play an important ecological role in the Arctic marine ecosystem, supplying an accessible and stable food source to higher trophic levels during the period of ice melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agawin NSR, Duarte CM, Agustí S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600

    Article  CAS  Google Scholar 

  • Apollonio S (1985) Arctic marine phototrophic systems: functions of sea ice stabilization. Arctic 38:167–173

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Belzile C, Brugel S, Nozais C, Gratton Y, Demers S (2008) Variations of the abundance and nucleic acid content of heterotrophic bacteria in Beaufort Shelf waters during winter and spring. J Mar Syst 74:946–956. doi:10.1016/j.jmarsys.2007.12.010

    Article  Google Scholar 

  • Bérard-Therriault L, Poulin M, Bossé L (1999) Guide d’identification du phytoplancton marin de l’estuaire du Saint-Laurent, incluant également certains protozoaires. Publ Spéc Can Sci Halieut Aquat 128:1–387

    Google Scholar 

  • Bricaud A, Stramski D (1990) Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea. Limnol Oceanogr 35:562–582

    Article  CAS  Google Scholar 

  • Bricaud A, Claustre H, Ras J, Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J Geophys Res 109:C11010. doi:10.1029/2004JC002419

    Article  Google Scholar 

  • Buck KR, Nielsen TG, Hansen BW, Gastrup-Hansen D, Thomsen HA (1998) Infiltration phyto- and protozooplankton assemblages in the annual sea ice of Disko Island, West Greenland, spring 1996. Polar Biol 20:377–381

    Article  Google Scholar 

  • Bursa A (1963) Phytoplankton in coastal waters of the Arctic Ocean at Point Barrow, Alaska. Arctic 16:239–262

    Google Scholar 

  • Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 213–237

    Google Scholar 

  • Cleveland JS, Weidemann AD (1993) Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnol Oceanogr 38:1321–1327

    Article  CAS  Google Scholar 

  • Ehn JK, Mundy CJ, Barber DG, Hop H, Rossnagel A, Stewart J (in press) Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic. J Geophys Res. doi:10.1029/2010JC006908

  • Eicken H, Krouse HR, Kadko D, Perovich DK (2002) Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J Geophys Res 107:C108046. doi:10.1029/2000JC000583

    Article  Google Scholar 

  • Ewert M, Deming JW (2011) Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Ann Glaciol 52:111–117

    Article  CAS  Google Scholar 

  • Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239

    Article  Google Scholar 

  • Golden KM, Eicken H, Heaton AL, Miner J, Pringle DJ, Zhu J (2007) Thermal evolution of permeability and microstructure in sea ice. Geophys Res Lett 34:L16501. doi:10.1029/2007GL030447

    Article  Google Scholar 

  • Gradinger R (1996) Occurrence of an algal bloom under Arctic pack ice. Mar Ecol Prog Ser 131:301–305

    Article  Google Scholar 

  • Gradinger R (1999) Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar Biol 133:745–754

    Article  Google Scholar 

  • Gradinger R, Lenz J (1989) Picocyanobacteria in the high Arctic. Mar Ecol Prog Ser 52:99–101

    Article  Google Scholar 

  • Gradinger R, Meiners K, Plumley G, Zhang Q, Bluhm BA (2005) Abundance and composition of the sea-ice meiofauna in off-shore pack ice of the Beaufort Gyre in summer 2002 and 2003. Polar Biol 28:171–181. doi:10.1007/s00300-004-0674-5

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, New York

    Book  Google Scholar 

  • Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JD (1965) Fluorometric determination of chlorophyll. J Cons Int Explor Mer 30:3–15

    CAS  Google Scholar 

  • Hop H, Mundy CJ, Rossnagel AL, Gosselin M, Barber DG (2011) Zooplankton boom and ice amphipod bust below melting sea ice in the Amundsen Gulf, Arctic Canada. Polar Biol. doi:10.1007/s00300-011-0991-4

  • Horner RA (2002) A taxonomic guide to some common marine phytoplankton. Biopress Limited, Bristol

    Google Scholar 

  • Horner R, Schrader GC (1982) Relative contribution of ice-algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:485–503

    Google Scholar 

  • Horner R, Ackley SF, Dieckmann GS, Gulliksen B, Hoshiai T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan C (1992) Ecology of sea ice biota 1. Habitat, terminology, and methodology. Polar Biol 12:417–427

    Article  Google Scholar 

  • Johnsen G, Samset O, Granskog L, Sakshaug E (1994) In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton: taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis. Mar Ecol Prog Ser 105:149–157

    Article  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557. doi:10.1128/AEM.70.1.550-557.2004

    Article  PubMed  CAS  Google Scholar 

  • Karentz D, McEuen FS, Land MC, Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166

    Article  CAS  Google Scholar 

  • Kashino Y, Fujimoto K, Akamatsu A, Koike H, Satoh K, Kudoh S (1998) Photosynthetic pigment composition of ice algal and phytoplankton assemblages in early spring in Saroma Ko Lagoon, Hokkaido, Japan. Proc NIPR Symp Polar Biol 11:22–32

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kramer M, Kiko R (2010) Brackish meltponds on Arctic sea ice—a new habitat for marine metazoans. Polar Biol. doi:10.1007/s00300-010-0911-z

  • Krembs C, Deming JW (2008) The role of exopolymers in microbial adaptation to sea ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, New York, pp 247–264

    Chapter  Google Scholar 

  • Krembs C, Mock T, Gradinger R (2001) A mesocosm study on physical-biological interactions in artificial Arctic sea ice. Polar Biol 24:356–364

    Article  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res I 49:2163–2181. doi:10.1016/S0967-0637(02)00122-X

    Article  CAS  Google Scholar 

  • Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci USA. doi:10.1073/pnas.1100701108

  • Kudoh S, Imura S, Kashino Y (2003) Xanthophyll-cycle of ice algae on the sea ice bottom in Saroma Ko lagoon, Hokkaido, Japan. Polar Biosci 16:86–97

    Google Scholar 

  • Laurion I, Blouin F, Roy S (2003) The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV waveband. Limnol Oceanogr Methods 1:1–9

    Article  Google Scholar 

  • Laurion I, Blouin F, Roy S (2004) Packaging of mycosporine-like amino acids in dinoflagellates. Mar Ecol Prog Ser 279:297–303

    Article  CAS  Google Scholar 

  • Leu E, Wiktor J, Søreide JE, Berge J, Falk-Petersen S (2010) Increased irradiance reduces food quality of sea ice algae. Mar Ecol Prog Ser 411:49–60. doi:10.3354/meps08647

    Article  CAS  Google Scholar 

  • Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal number and the statistical basis of estimations by counting. Hydrobiologia 11:143–170

    Article  Google Scholar 

  • Manes SS, Gradinger R (2009) Small scale vertical gradients of Arctic ice algal photophysiological properties. Photosynth Res 102:53–66. doi:10.1007/s11120-009-9489-0

    Article  PubMed  CAS  Google Scholar 

  • Marie D, Simon N, Vaulot D (2005) Phytoplankton cell counting by flow cytometry. In: Andersen RA (ed) Algal culturing techniques. Academic Press, London, pp 253–268

    Chapter  Google Scholar 

  • Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid extensive sea-ice loss. Geophys Res Lett 34:L24501. doi:10.1029/2007GL0320432007

    Article  Google Scholar 

  • Medlin LK, Hasle GR (1990) Some Nitzschia and related diatom species from fast ice samples in the Arctic and Antarctic. Polar Biol 10:451–479

    Article  Google Scholar 

  • Meiners K, Fehling J, Granskog MA, Spindler M (2002) Abundance, biomass and composition of biota in Baltic sea ice and underlying water (March 2000). Polar Biol 25:761–770. doi:10.1007/s00300-002-0403-x

    Google Scholar 

  • Meiners K, Gradinger R, Fehling J, Civitarese G, Spindler M (2003) Vertical distribution of exopolymer particles in sea ice of the Fram Strait (Arctic) during autumn. Mar Ecol Progr Ser 248:1–13

    Article  CAS  Google Scholar 

  • Meiners K, Krembs C, Gradinger R (2008) Exopolymer particles: microbial hotspots of enhanced bacterial activity in Arctic fast ice (Chukchi Sea). Aquat Microb Ecol 52:195–207. doi:10.3354/ame01214

    Article  Google Scholar 

  • Melnikov IA, Kolosova EG, Welch HE, Zhitina LS (2002) Sea ice biological communities and nutrient dynamics in the Canada Basin of the Arctic Ocean. Deep Sea Res I 49:1623–1649

    Article  CAS  Google Scholar 

  • Michel C, Legendre L, Therriault J-C, Demers S, Vandevelde T (1993) Springtime coupling between ice algal and phytoplankton assemblages in Southeastern Hudson Bay, Canadian Arctic. Polar Biol 13:441–449

    Article  Google Scholar 

  • Mundy CJ, Gosselin M, Ehn JK, Gratton Y, Rossnagel AL, Barber DG, Martin J, Tremblay J-É, Palmer M, Arrigo K, Darnis G, Fortier L, Else B, Papakyriakou TN (2009) Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys Res Lett 36:L17601. doi:10.1029/2009GL038837

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lali CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Toronto

    Google Scholar 

  • Perovich DK (2005) On the aggregate-scale partitioning of solar radiation in Arctic sea ice during the Surface Heat Budget of the Artic Ocean (SHEBA) field experiment. J Geophy Res 110:C03002. doi:10.1029/2004JC002512

  • Perovich DK (2006) The interaction of ultraviolet light with Arctic sea ice during SHEBA. Ann Glaciol 44:47–52

    Article  CAS  Google Scholar 

  • Petrich C, Eicken H (2010) Chapter 2. Growth, structure and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Wiley Blackwell Publishing, Oxford. doi:10.1002/9781444317145.ch2

  • Poulin M (1990) Ice diatoms: the Arctic. In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, Cambridge, pp 15–18

    Google Scholar 

  • Poulin M (1991) Sea ice diatoms (Bacillariophyceae) of the Canadian Arctic. 2. A taxonomic, morphological and geographical study of Gyrosigma concilians. Nord J Bot 10:681–688

    Article  Google Scholar 

  • Poulin M, Cardinal A (1982) Sea ice diatoms from Manitounuk Sound, southeastern Hudson Bay (Quebec, Canada). II. Naviculaceae, genus Navicula. Can J Bot 60:2825–2845

    Article  Google Scholar 

  • Pringle DJ, Miner JE, Eicken H, Golden KM (2009) Pore space percolation in sea ice single crystals. J Geophys Res 114:C12017. doi:10.1029/2008JC005145

    Article  Google Scholar 

  • Rex M, Salawitch RJ, von der Gathen P, Harris NRP, Chipperfield MP, Naujokat B (2004) Arctic ozone loss and climate change. Geophys Res Lett 31:L04116. doi:10.1029/2003GL018844

    Article  Google Scholar 

  • Riedel A, Michel C, Gosselin M, LeBlanc B (2008) Winter–spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean. J Mar Syst 74:918–932. doi:10.1016/j.jmarsys.2008.01.003

    Article  Google Scholar 

  • Robineau B, Legendre L, Therriault J-C, Fortier L, Rosenberg G, Demers S (1994) Ultra-algae (5 μm) in the ice, at the ice-water interface and in the under-ice water column (southeastern Hudson Bay, Canada). Mar Ecol Prog Ser 115:169–180

    Article  Google Scholar 

  • Robineau B, Legendre L, Michel C, Budeus G, Kattner G, Schneider W, Pesant S (1999) Ultraphytoplankton abundances and chlorophyll a concentrations in ice-covered waters of northern seas. J Plankton Res 21:735–755

    Article  Google Scholar 

  • Roy S (2000) Strategies for the minimisation of UV-induced damage. In: de Mora SJ, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 177–205

    Chapter  Google Scholar 

  • Różańska M, Gosselin M, Poulin M, Wiktor JM, Michel C (2009) Influence of environmental factors on the development of bottom ice protist communities during the winter–spring transition. Mar Ecol Prog Ser 386:43–59. doi:10.3354/meps08092

    Article  Google Scholar 

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plantarium 69:561–568

    Article  CAS  Google Scholar 

  • Smith REH, Anning J, Clement P, Cota G (1988) Abundance and production of ice algae in Resolute Passage, Canadian Arctic. Mar Ecol Prog Ser 48:251–263

    Article  Google Scholar 

  • Smith REH, Clement P, Cota G (1989) Population dynamics of bacteria in Arctic sea ice. Microb Ecol 17:63–76

    Article  Google Scholar 

  • Smith REH, Harrison WG, Harris LR, Herman AW (1990) Vertical fine structure of particulate matter and nutrients in sea ice of the high Arctic. Can J Fish Aquat Sci 47:1348–1355

    Article  CAS  Google Scholar 

  • Sosik HM (1999) Storage of marine particulate samples for light-absorption measurements. Limnol Oceanogr 44:1139–1141

    Article  Google Scholar 

  • Stroeve J, Markus T, Meier WN, Miller J (2006) Recent changes in the Arctic melt season. Ann Glaciol 44:367–374. doi:10.3189/172756406781811583

    Article  Google Scholar 

  • Stuart V, Sathyendranath S, Head EJH, Platt T, Irwin B, Maass H (2000) Bio-optical characteristics of diatom and prymnesiophyte populations in the Labrador Sea. Mar Ecol 201:91–106

    Article  Google Scholar 

  • Syvertsen EE (1991) Ice algae in the Barents Sea: types of assemblages, origin, fate and role in the ice-edge phytoplankton bloom. Polar Res 10:277–287

    Article  Google Scholar 

  • Throndsen J, Hasle GR, Tangen K (2007) Phytoplankton of Norwegian coastal waters. Almater Forlag AS, Oslo

    Google Scholar 

  • Tomas CR (1997) Identifying marine phytoplankton. Academic Press, San Diego

    Google Scholar 

  • Tremblay J-É, Simpson K, Martin J, Miller L, Gratton Y, Barber D, Price NM (2008) Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J Geophys Res 113:C07S90. doi:10.1029/2007JC004547

  • Tremblay G, Belzile C, Gosselin M, Poulin M, Roy S, Tremblay J-É (2009) Late summer phytoplankton distribution along a 3,500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat Microb Ecol 54:55–70

    Article  Google Scholar 

  • Uusikivi J, Vähätalo AV, Granskog MA, Sommaruga R (2010) Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation. Limnol Oceanogr 55:703–713

    Article  PubMed  CAS  Google Scholar 

  • von Quillfeldt CH (2000) Common diatom species in Arctic spring blooms: their distribution and abundance. Bot Mar 43:499–516

    Article  Google Scholar 

  • von Quillfeldt CH (2001) Identification of some easily confused common diatom species in Arctic spring blooms. Bot Mar 44:375–389

    Article  Google Scholar 

Download references

Acknowledgments

This work is a contribution to the International Polar Year–Circumpolar Flaw Lead system study (IPY–CFL 2008), supported through grants from the Canadian IPY Federal program office, the Natural Sciences and Engineering Research Council and numerous international collaborators. Postdoctoral fellowship support was provided from the Fonds québécois de la recherche sur la nature et les technologies (FQRNT) to C.J.M. and the Centre National d’Études Spatiales (CNES) to J.K.E. Additional funding was provided from the Canadian Museum of Nature to M.P. The participation of H.H. was jointly facilitated by ARCTOS and ArcticNet, within the IPY-project PanAME funded by the Research Council of Norway. We would like to extend our gratitude to Dr. J.-É. Tremblay’s lab for processing nutrient samples, A. Rossnagel for CTD data and assistance in the field, and to B. Philippe, M. Palmer, A. Sallon, T. Brown, J. Ferland, S. Pineault, J. Gagnon, J. Martin, D. Nguyen, R. Maranger, and the officers and crew of the CCGS Amundsen for logistical and postprocessing support. We gratefully acknowledge K. Meiners and two anonymous reviewers for comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Mundy.

Additional information

This article belongs to the special issue “Circumpolar Flaw Lead Study (CFL)”, coordinated by J. Deming and L. Fortier.

Appendix

Appendix

See Table 1.

Table 1 Detailed taxonomic list and abundance (cells mL−1) of unicellular eukaryotes (cells, spores, and cysts) identified and enumerated using inverted microscopy on samples from the interior ice (17–37-cm section from the ice surface collected on June 18), bottom ice (bottommost 3 cm collected on June 9 and 18) and dome (collected on June 8 and 18) collected in Darnley Bay, NT, Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mundy, C.J., Gosselin, M., Ehn, J.K. et al. Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biol 34, 1869–1886 (2011). https://doi.org/10.1007/s00300-011-0998-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-0998-x

Keywords

Navigation