Skip to main content

Advertisement

Log in

Photosynthesis research under climate change

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Increasing global population and climate change uncertainties have compelled increased photosynthetic efficiency and yields to ensure food security over the coming decades. Potentially, genetic manipulation and minimization of carbon or energy losses can be ideal to boost photosynthetic efficiency or crop productivity. Despite significant efforts, limited success has been achieved. There is a need for thorough improvement in key photosynthetic limiting factors, such as stomatal conductance, mesophyll conductance, biochemical capacity combined with Rubisco, the Calvin–Benson cycle, thylakoid membrane electron transport, nonphotochemical quenching, and carbon metabolism or fixation pathways. In addition, the mechanistic basis for the enhancement in photosynthetic adaptation to environmental variables such as light intensity, temperature and elevated CO2 requires further investigation. This review sheds light on strategies to improve plant photosynthesis by targeting these intrinsic photosynthetic limitations and external environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi S, Nakae T, Uchida M, Soda K, Takai T, Oi T et al (2013) The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. J Exp Bot 64:1061–1072

    CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    PubMed  Google Scholar 

  • Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoo Ra HS, Zhu XG, Curtis PS (2002) A meta analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Change Biol 8(8):695–709

    Google Scholar 

  • Atkinson N, Mao Y, Chan KX, McCormick AJ (2020) Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts. Nat Commun 11(1):1–9

    Google Scholar 

  • Bathellier C, Tcherkez G, Lorimer GH, Farquhar GD (2018) Rubisco is not really so bad. Plant Cell Environ 41(4):705–716. https://doi.org/10.1111/pce.13149

    Article  CAS  PubMed  Google Scholar 

  • Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsogon A, Nunes-Nesi A, Araujo WL (2020) Engineering improved photosynthesis in the era of synthetic biology. Plant Commun 1: 100032

    PubMed  PubMed Central  Google Scholar 

  • Berry JO, Yerramsetty P, Zielinski AM, Mure CM (2013) Photosynthetic gene expression in higher plants. Photosynth Res 117(1):91–120

    CAS  PubMed  Google Scholar 

  • Bielczynski LW, Schansker G, Croce R (2019) Consequences of the reduction of the PSII antenna size on the light acclimation capacity of Arabidopsis thaliana. Plant Cell Environ Adv Access Publ. https://doi.org/10.1111/pce.13701

    Article  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    CAS  PubMed  Google Scholar 

  • Bracher A, Whitney SM, Hartl FU, Hayer-Hartl M (2017) Biogenesis and metabolic maintenance of Rubisco. Ann Rev Plant Bio 68:29–60

    CAS  Google Scholar 

  • Brestic M, Zivcak M, Hauptvogel P, Misheva S, Kocheva K, Yang X, Allakhverdiev SI (2018) Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynth Res 136(2):245–255

    CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM, Carpentier R, Allakhverdiev SI (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticumaestivum L. Plant Physiol Biochem 57:93–105

    CAS  PubMed  Google Scholar 

  • Buntru M, Gärtner S, Staib L, Kreuzaler F, Schlaich N (2013) Delivery of multiple transgenes to plant cells by an improved version of Multi Round Gateway technology. Trans Res 22(1):153–167

    CAS  Google Scholar 

  • Carmo-Silva, E., Scales, J. C., Madgwick, P. J., & Parry, M. A. (2015) Optimizing R ubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38(9):1817–1832

    CAS  PubMed  Google Scholar 

  • Cen Y-P, Sage RF (2005) The regulation of rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Huang HE, Cheng CF, Ho MH, Ger MJ (2017) Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). Transgenic Res 26:279–289

    CAS  PubMed  Google Scholar 

  • Chang TG, Zhu XG (2017) Source–sink interaction: a century old concept under the light of modern molecular systems biology. J Exp Bot 68:4417–4431

    CAS  PubMed  Google Scholar 

  • Chen JH, Chen ST, He NY, Wang QL, Zhao Y, Gao W, Guo FQ (2020) Nuclearencoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nat Plant 6(5):570–580

    CAS  Google Scholar 

  • Chen X, Hao M-D (2015) Low contribution of photosynthesis and water-use efficiency to improvement of grain yield in Chinese wheat. Photosynthetica 53:519–526

    Google Scholar 

  • Chida H, Nakazawa A, Akazaki H, Hirano T, Suruga K, Ogawa M, SatohT KK, Yamada S, Hakamata W et al (2007) Expression of thealgal cytochrome c6 gene in Arabidopsis enhances photosynthesis andgrowth. Plant Cell Physiol 48:948–957

    CAS  PubMed  Google Scholar 

  • Cramer WA, Zhang H (2006) Consequences of the structure of the cytochrome b6f complex for its charge transfer pathways. Biochim Biophys Acta 1757:339–345

    CAS  PubMed  Google Scholar 

  • Dann M, Leister D (2017) Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Philos Trans R Soc B 372(1730):20160380

    Google Scholar 

  • Delucia EH, Sasek TW, Strain BR (1985) Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth Res 7(2):175–184

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    CAS  PubMed  Google Scholar 

  • DePaoli HC, Borland AM, Tuskan GA, Cushman JC, Yang X (2014) Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities. J Exp Bot 65(13):3381–3393

    CAS  PubMed  Google Scholar 

  • Detto M, Xu X (2020) Optimalleaflifestrategiesdetermine V c, maxdynamicduringontogeny. New Phytol. https://doi.org/10.1111/nph.16712

    Article  PubMed  Google Scholar 

  • Driever SM, Lawson T, Andralojc PJ, Raines CA, Parry MAJ (2014) Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. J Exp Bot 65(17):4959–4973. https://doi.org/10.1093/jxb/eru253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driever SM, Simkin AJ, Alotaibi S, Fisk SJ, Madgwick PJ, Sparks CA, Raines CA (2017) Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos Trans R Soc B 372(1730):20160384

    Google Scholar 

  • Dwyer SA, Ghannoum O, Nicotra A, von Caemmerer S (2007) High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Plant Cell Environ 30:53–66

    CAS  PubMed  Google Scholar 

  • Eisenhut M, Bräutigam A, Timm S, Florian A, Tohge T, Fernie AR, Bauwe H, Weber APM (2017) photorespiration is crucial for dynamic response of photosynthetic metabolism and stomatal movement to altered CO2 availability. Mol Plant 10(1):47–61. https://doi.org/10.1016/j.molp.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  • Emmel C, D’Odorico P, Revill A, Hörtnagl L, Ammann C, Buchmann N, Eugster W (2020) Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture. Glob Change Biol 26(9):5164–5177

    Google Scholar 

  • Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordström M, Azoulay-Shemer T, Rappel WJ, Iba K, Schroeder JI (2016) CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends Plant Sci 21(1):16–30

    CAS  PubMed  Google Scholar 

  • Ermakova M, Lopez-Calcagno PE, Raines CA, Furbank RT, von Caemmerer S (2019) Overexpression of the Rieske FeS protein of the Cytochrome b 6 f complex increases C 4 photosynthesis in Setaria viridis. Commun Biol 2(1):1–12

    CAS  Google Scholar 

  • Éva C, Oszvald M, Tamás L (2019) Current and possible approaches for improving photosynthetic efficiency. Plant Sci 280:433–440

    PubMed  Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol 162(4):1780–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fankhausen N, Aubry S (2017) Post-transcriptional regulation of photosynthetic genes is a key driver of C4 leaf ontogeny. J Exp Bot 68:137–146

    Google Scholar 

  • Fernie AR, Bachem CW, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Sonnewald U (2020) Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nat Plants 6(2):55–66

    PubMed  Google Scholar 

  • Fernie AR, Yan J (2019) De novo domestication: an alternative route toward new crops for the future. Mol Plant 12(5):615–631

    CAS  PubMed  Google Scholar 

  • Flecken M, Wang H, Popilka L, Hartl FU, Bracher A, Hayer-Hartl M (2020) Dual role of a rubisco activase in metabolic repair and carboxysome organization. BioRxiv.

  • Flexas J, Ribas-Carbo M, Diaz-Espejo A, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    CAS  PubMed  Google Scholar 

  • Flöck D, Helms V (2004) A Brownian dynamics study: the effect of a membrane environment on an electron transfer system. Biophysical J 87(1):65–74

    Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100

    CAS  PubMed  Google Scholar 

  • Franks PJ, Doheny-Adams T, Britton-Harper ZJ, Gray JE (2015) Increasing water use efficiency directly through genetic manipulation of stomatal density. New Phytol 207:188–195

    CAS  PubMed  Google Scholar 

  • Furbank RT, Sharwood R, Estavillo GM, Silva-Perez V, Condon AG (2020) Photons to food: genetic improvement of cereal crop photosynthesis. Jexp Bot 71(7):2226–2238

    CAS  Google Scholar 

  • Gago J, Daloso DM, Carriquí M, Nadal M, Morales M, Araújo WL, Nunes-Nesi A, Flexas J (2020) Mesophyll conductance: the leaf corridors for photosynthesis. Biochem Soc Trans 48(2):429–439

    CAS  PubMed  Google Scholar 

  • Gong HY, Li Y, Fang G, Hu DH, Jin WB, Wang ZH, Li YS (2015) Transgenic rice expressing Ictb and FBP/Sbpase derived from cyanobacteria exhibits enhanced photosynthesis and mesophyll conductance to CO2. PLoS ONE 10: e0140928

    PubMed  PubMed Central  Google Scholar 

  • Gu J, Zhou Z, Li Z, Chen Y, Wang Z, Zhang H (2017) Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crop Res 200:58–70

    Google Scholar 

  • Gutierrez-Rodriquez M et al (2000) Photosynthesis of wheat in a warm, irrigated environment II. Traits associated with genetic gains in yield. Field Crops Res 66:51–62

    Google Scholar 

  • Guy RD, Momayyezi M, McKown AD, Bell SCS (2019) Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. Plant J 101:831–844

    Google Scholar 

  • Hay WT, Bihmidine S, Mutlu N, Le Hoang K, Awada T, Weeks DP, Long SP (2017) Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB. J Plant Physiol 212:58–68

    CAS  PubMed  Google Scholar 

  • Hendrickson L, Sharwood R, Ludwig M, Whitney SM, Badger MR, von Caemmerer S (2008) The effects of Rubisco activase on C4 photosynthesis and metabolism at high temperature. J Exp Bot 59(7):1789–1798

    CAS  PubMed  Google Scholar 

  • Ho MY, Shen G, Canniffe DP, Zhao C, Bryant DA (2016) Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 353:aff9178

    Google Scholar 

  • Hossain AS, Skalicky M, BresticM MS, Ashraful Alam M, Syed MA, Hossain J, Sarkar S, Saha S, Bhadra P et al (2021) Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11:241. https://doi.org/10.3390/agronomy11020241

    Article  CAS  Google Scholar 

  • Hsin J, Chandler DE, Gumbart J, Harrison CB, Şener M, Strumpfer J, Schulten K (2010) Self-assembly of photosynthetic membranes. ChemPhysChem 11(6):1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, P. K., Takahashi, Y., Munemasa, S., Merilo, E., Laanemets, K., Waadt, R, Schroeder, J. I. (2018). Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downstream of OST1 kinase.Pro Nat AcadSci 115(42) E9971-E9980.

  • Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M, Xue S, Ries A, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO 2-controlled stomatal movements in guard cells. Nat Cell Biol 12(1):87–93

    CAS  PubMed  Google Scholar 

  • Hubbart S, Smillie IR, Heatley M, Swarup R, Foo CC, Zhao L, Murchie EH (2018) Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun Biol 1(1):1–12

    CAS  Google Scholar 

  • Hussain S, Liu T, Iqbal N, Brestic M, Pang T, Mumtaz M, Li S, Wang L, Gao Y, Khan A (2020a) Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochem Photobiol Sci 19(4):462–472

    CAS  PubMed  Google Scholar 

  • Hussain S, Pang T, Iqbal N, Shafiq I, Skalicky M, Brestic M, Safdar ME, Mumtaz M, Ahmad A, Asghar MA, Raza A (2020b) Acclimation strategy and plasticity of different soybean genotypes in intercropping. Func Plant Biol 47(7):592–610

    CAS  Google Scholar 

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller H.(eds.), Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (996 pp)

  • Itzhak Kurek O, Kai Chang T, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    PubMed  PubMed Central  Google Scholar 

  • Kaldenhoff R (2012) Mechanisms underlying CO2 diffusion in leaves. Curr Opin Plant Biol 15:276–281

    CAS  PubMed  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C. 2007. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    CAS  PubMed  Google Scholar 

  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499(7458):324–327

    CAS  PubMed  Google Scholar 

  • Kirst H, Gabilly ST, Niyogi KK, Lemaux PG, Melis A (2017) Photosynthetic antenna engineering to improve crop yields. Planta 245:1009–1020

    CAS  PubMed  Google Scholar 

  • Köhler IH, Ruiz-Vera UM, VanLoocke A, Thomey ML, Clemente T, Long SP, Bernacchi CJ (2017) Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. J Exp Bot 68(3):715–726

    PubMed  Google Scholar 

  • Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, NiyogiKK LSP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861

    CAS  PubMed  Google Scholar 

  • Kubien DS, von Cammerer S, Furbank RT, Sage RF (2003) C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of Rubisco. Plant Physiol 132:1577–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubis A, Bar-Even A (2019) Synthetic biology approaches for improving photosynthesis. J Exp Bot 70(5):1425–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, Cano FJ, Carter KR, Cavaleri MA, Cernusak LA, Chambers JQ (2019) Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol 222(2):768–784

    CAS  PubMed  Google Scholar 

  • Kumari VV, Roy A, Vijayan R, Banerjee P, Verma VC, Nalia A, Pramanik M, Mukherjee B, Ghosh A, Reja MH et al (2021) Drought and Heat stress in cool-season food legumes in sub-tropical regions: consequences, adaptation, and mitigation strategies. Plants 10:1038. https://doi.org/10.3390/plants10061038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19(10):3230–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T, Vialet-Chabrand S (2019) Speedy stomata, photosynthesis and plant water use efficiency. New Phytol 221(1):93–98

    PubMed  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    CAS  PubMed  Google Scholar 

  • Leister D (2012) How can the light reactions of photosynthesis be improved in plants? Front Plant Sci 3:199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kristiansen K, Rosenqvist E, Liu F (2019) Elevated CO2 modulates the effects of drought and heat stress on plant water relations and grain yield in wheat. J Agron Crop Sci 205:362–371

    CAS  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) Nature 513:547–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Lu Y, Hua W, Last RL (2019) A new light on photosystem II maintenance in oxygenic photosynthesis. Front Plant Sci 10:975

    PubMed  PubMed Central  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    CAS  PubMed  Google Scholar 

  • Long SP, Marshall-Colon A, Zhu XG (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161(1):56–66

    CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29(3):315–330

    CAS  PubMed  Google Scholar 

  • López-Calcagno PE, Abuzaid AO, Lawson T, Raines CA (2017) Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin–Benson cycle. J Exp Bot 68:2285–2298

    Google Scholar 

  • Lundgren MR, Mathers A, Baillie AL et al (2019) Mesophyll porosity is modulated by the presence of functional stomata. Nat Commun 10:2825

    PubMed  PubMed Central  Google Scholar 

  • Lundgren MR, Fleming AJ (2020) Cellular perspectives for improving mesophyll conductance. The Plant J 101(4):845–857

    CAS  PubMed  Google Scholar 

  • Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40(10):999–1006

    CAS  Google Scholar 

  • Mali SC, Raj S, Trivedi R (2020) Nanotechnology a novel approach to enhance crop productivity. Biochem Biophys Rep 24:100821

    Google Scholar 

  • McAusland L, VialetChabrand S, Jauregui I, Burridge A, HubbartEdwards S, Fryer MJ, Fryer MJ, King IP, King J, Pyke K, Edwards KJ, Carmo‐Silva E (2020) Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. New Phytol. https://doi.org/10.1111/nph.16832

    Article  PubMed  Google Scholar 

  • McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164:2247–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Momayyezi M, McKown AD, Bell SC, Guy RD (2020) Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. The Plant J 101(4):831–844

    CAS  PubMed  Google Scholar 

  • Moses T (2019) Shedding light on the power of light. Plant Physiol 179:775–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz P, Munné-Bosch S (2018) Photo-oxidative stress during leaf, flower and fruit development. Plant Physiol 176(2):1004–1014

    PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    CAS  PubMed  Google Scholar 

  • Murchie EH, Ruban AV (2020) Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. Plant J 101(4):885–896

    CAS  PubMed  Google Scholar 

  • Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    CAS  PubMed  Google Scholar 

  • Nickelsen J, Rengstl B (2013) Photosystem II assembly: from cyanobacteria to plants. Ann Rev Plant Biol 64:609–635

    CAS  Google Scholar 

  • Nowicka B (2019) Target genes for plant productivity improvement. J Biotechnol 298:21–34

    CAS  PubMed  Google Scholar 

  • Nowicka B, Ciura J, Szymańska R, Kruk J (2018) Improving photosynthesis, plant productivity and abiotic stress tolerance – current trends and future perspectives. J Plant Physiol 231:415–433

    CAS  PubMed  Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33(8):862–869

    CAS  PubMed  Google Scholar 

  • Orr DJ, Pereira AM, da Fonseca-Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL (2017) Engineering photosynthesis: progress and perspectives. F1000Research 6:1891

    PubMed  PubMed Central  Google Scholar 

  • Ort DR, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    CAS  PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Nat Acad Sci 112:8529–8536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parry MA, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 59(7):1569–1580

    CAS  PubMed  Google Scholar 

  • Pearce FG (2006) Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies. Biochem J 399(3):525–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prashar A, Yildiz J, McNicol JW, Bryan GJ, Jones HG (2013) Infra-red thermography for high throughput field phenotyping in Solanumtuberosum. PLoS ONE 8(6):e65816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price GD, Pengelly JJ, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64:753–768

    CAS  PubMed  Google Scholar 

  • Raven JA (2013) R ubisco: still the most abundant protein of Earth? New Phytol 198(1):1–3

    CAS  PubMed  Google Scholar 

  • Ren T, Weraduwage SM, Sharkey TD (2019) Prospects for enhancing leaf photosynthetic capacity by manipulating mesophyll cell morphology. J Exp Bot 70(4):1153–1165

    CAS  PubMed  Google Scholar 

  • Robson TM, Klem K, Urban O, Jansen MAK (2015) Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ 38:856–866

    CAS  PubMed  Google Scholar 

  • Ruban AV (2016) Non photochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170(4):1903–1916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Vera UM, Siebers M, Gray SB, Drag DW, Rosenthal DM, Kimball BA (2013) Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol 162(1):410–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Vera UM, De Souza AP, Ament MR, Gleadow RM, Ort DR (2021) High sink strength prevents photosynthetic down-regulation in cassava grown at elevated CO2 concentration. J Exp Bot 72(2):542–560

    CAS  PubMed  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ, Salvucci ME (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savir Y, Noor E, Milo R, Tlusty T (2010) Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc Nat Acad Sci 107(8):3475–3480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sawchuk MG, Donner TJ, Head P, Scarpella E (2008) Unique and overlapping expression patterns among members of photosynthesis-associated nuclear gene families in Arabidopsis. Plant Physiol 148(4):1908–1924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sedelnikova OV, Hughes TE, Langdale JA (2018) Understanding the genetic basis of C4 Kranz anatomy with a view to engineering C3 crops. Ann Rev Gene 52:249–270

    CAS  Google Scholar 

  • Seneweera S (2011) Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. J Plant Interact 6:35–42

    CAS  Google Scholar 

  • Serbin SP, Dillaway DN, Kruger EL, Townsend PA (2012) Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. JExpBot 63(1):489–502

    CAS  Google Scholar 

  • Sharwood RE (2017) Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytol 213:494–510

    CAS  PubMed  Google Scholar 

  • Shen BR, Wang LM, Lin XL et al (2019) Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Mol Plant 12:199–214

    CAS  PubMed  Google Scholar 

  • Silva-Pérez V, De Faveri J, Molero G, Deery DM, Condon AG, Reynolds MP, Evans JR, Furbank RT (2020) Genetic variation for photosynthetic capacity and efficiency in spring wheat. J Exp Bot 717:2299–2311. https://doi.org/10.1093/jxb/erz439

    Article  CAS  Google Scholar 

  • Simkin AJ, Lopez-Calcagno PE, Davey PA, Headland LR, Lawson T, Timm S, Bauwe H, Raines CA (2017a) Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J15:805–816

    Google Scholar 

  • Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA (2015) Multigene manipulation of photosynthetic carbon assimilation increasesCO2 fixation and biomass yield in tobacco. J Bot 66:4075–4090

    CAS  Google Scholar 

  • Simkin AJ, McAusland L, Lawson T, Raines CA (2017b) Overexpression of the Rieske FeS protein increases electron transport rates and biomass yield. Plant Physiol 175:134–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, López-Calcagno PE, Raines CA (2019) Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70(4):1119–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair TR, Jamieson PD (2006) Grain number, wheat yield, and bottling beer: an analysis. Field Crop Res 98:60–67

    Google Scholar 

  • Sinclair TR, Jamieson PD (2008) Yield and grain number of wheat: a correlation or causal relationship? Authors’ response to the ‘“The importance of grain or kernel number in wheat: a reply to Sinclair and Jamieson”’ by R.A. Fischer Field Crop Res 105:22–26

    Google Scholar 

  • Sinclair TR, Rufty TW, Lewis RS (2019) Increasing photosynthesis: unlikely solution for world food problem. Trends Plant Sci 24(11):1032–1039

    CAS  PubMed  Google Scholar 

  • Slattery RA, Walker BJ, Weber APM, Ort DR (2018) The impacts of fluctuating light on crop performance. Plant Physiol 176:990–1003

    CAS  PubMed  Google Scholar 

  • Smith NG, Keenan TF, Colin Prentice I, Wang H, Wright IJ, Niinemets U (2019) Global photosynthetic capacity is optimized to the environment. Ecol Lett 22(3):506–517

    PubMed  PubMed Central  Google Scholar 

  • Song Q-F, Wang Y, Qu M, Ort DR, Zhu X-G (2017) The impact of modifying photosystem antenna size on canopy photosynthetic efficiency. Plant Cell Environ 40:2946–2957

    CAS  PubMed  PubMed Central  Google Scholar 

  • South PF, Cavanagh AP, Liu HW, Ort DR (2019) Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363:eaat077

    Google Scholar 

  • South PF, Walker BJ, Cavanagh AP (2017) Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana. Plant Cell 29(4):808–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spreitzer RJ (2003) Role of the small subunit in ribulose-1, 5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophy 414(2):141–149

    CAS  Google Scholar 

  • Srinivasan V, Kumar P, Long SP (2017) Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob Chang Biol 23:1626–1635

    PubMed  Google Scholar 

  • Takizawa K, Kanazawa A, Kramer DM (2008) Depletion of stromal P(i) induces high ‘energy-dependent’ antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase. Plant Cell Environ 31:235–243

    CAS  PubMed  Google Scholar 

  • Tausz M, Tausz-Posch S, Norton RM, Fitzgerald GJ, Nicolas ME, Seneweera S (2013) Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ Exp Bot 88:71–80

    CAS  Google Scholar 

  • Taylor SH, Long SP (2017) Slow induction of photosynthesis on shade tosunto sun transitions in wheat may cost at least 21% of productivity. Philos Trans R Soc B 372:20160543

    Google Scholar 

  • Tcherkez G (2013) Modelling the reaction mechanism of ribulose-1, 5-bisphosphate carboxylase/oxygenase and consequences for kinetic parameters. Plant Cell Environ 36(9):1586–1596

    CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  • Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S (2017) Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Front Physiol 8:578

    PubMed  PubMed Central  Google Scholar 

  • Timm S, Giese J, Engel N, Wittmiß M, Florian A, Fernie AR, Bauwe H (2018) T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis. Planta 247:41–51

    CAS  PubMed  Google Scholar 

  • Ubierna N, Gandin A, Cousins AB (2018) The response of mesophyll conductance to short-term variation in CO2 in the C4 plants Setariaviridis and Zea mays. J Exp Bot 69(5):1159–1170. https://doi.org/10.1093/jxb/erx464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandegeer R, Miller R, Bain M (2012) Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esulenta Crantz). Funct Plant Biol 40:195–200

    Google Scholar 

  • Von Caemmerer S, Quick WP, Furbank RT. (2012). The development ofC4 rice: current progress and future challenges. Science 336, 1671–1672.

    Google Scholar 

  • von Caemmerer S, Evans JR (2010) Enhancing C3 photosynthesis. Plant Physiol 154(2):589–592

    Google Scholar 

  • Wachter, R.M. and Henderson, J.N., 2015. Photosynthesis: rubisco rescue. Nat Plants 1(1), pp.1–2.

    Google Scholar 

  • Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR (2018) Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiol 176(2):1215–1232

    CAS  PubMed  Google Scholar 

  • Wallace JG, Rodgers-Melnick E, Buckler ES (2018) On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Ann Rev Gene. 52:421–444

    CAS  Google Scholar 

  • Wang LM, Shen BR, Li BD, Zhang CL, Lin M, Tong PP, Peng XX (2020) A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Mol Plant 13(12):1802–1815

    CAS  PubMed  Google Scholar 

  • Wang P, Hendron RW, Kelly S (2017) Transcriptional control of photosynthetic capacity: conservation and divergence from Arabidopsis to rice. New Phytol 216:32–45

    CAS  PubMed  Google Scholar 

  • Wang QL, Chen JH, He NY, Guo FQ (2018) Metabolic reprogramming in chloroplasts under heat stress in plants. Int J Mol Sci 19(3):849

    PubMed Central  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119(1–2):89–100

    CAS  PubMed  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    CAS  Google Scholar 

  • Wu A, Hammer GL, Doherty A, von Caemmerer S, Farquhar GD (2019) Quantifying impacts of enhancing photosynthesis on crop yield. Nat Plants 5(4):380–388

    PubMed  Google Scholar 

  • Xin CP, Tholen D, Devloo V, Zhu XG (2015) The benefits of photorespiratory bypasses: how can they work? Plant Physiol 167:574–585

    CAS  PubMed  Google Scholar 

  • Yadav SK, Khatri K, Rathore MS, Jha B (2018) Introgression of UfCyt c6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol Biol Rep 45:1745–1758

    CAS  PubMed  Google Scholar 

  • Yamori W, Von Caemmerer S (2009) Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol 151:2073–2082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Noguchi K, Hikosaka K, Terashima I (2010) Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol 152:388–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    CAS  PubMed  Google Scholar 

  • Yoon M, Putterill JJ, Ross GS, Laing WA (2001) Determination of the relative expression levels of Rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends. Ana Biochem 291(2):237–244

    CAS  Google Scholar 

  • Zhang J et al (2018) Insights into the molecular mechanisms of CO2-mediated regulation of stomatal movements. Curr Biol 28:R1356–R1363

    CAS  PubMed  Google Scholar 

  • Zheng Y, Li F, Hao L, Yu J, Guo L, Zhou H, Ma C, Zhang X, Xu M (2019) Elevated CO 2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol 19(1):1–18

    PubMed  PubMed Central  Google Scholar 

  • Zhou XT, Wang F, Ma YP, Jia LJ, Liu N, Wang HY, Zhao P, Xia GX, Zhong NQ (2018) Ectopic expression of SsPETE2, a plastocyanin from Suaedasalsa, improves plant tolerance to oxidative stress. Plant Sci 268:1–10

    CAS  PubMed  Google Scholar 

  • Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic 1534 efficiency for greater yield. Ann Rev Plant Biol 61:235–261

    CAS  Google Scholar 

  • Zhu XG, Portis AR Jr, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27(2):155–165

    CAS  Google Scholar 

  • Ziotti ABS, Silva BP, Neto MC (2019) Photorespiration is crucial for salinity acclimation in castor bean. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2019.103845

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (31871570) and Sichuan Innovation Team Project of National Modern Agricultural Industry Technology System (SCCXTD-2020-20) and VEGA-1-0589-19 & APVV-18-0465. And Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), the Science and Technology Department of Zhejiang Province (14th 5-year New Oil Crops Breeding).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenyu Yang or Weiguo Liu.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Ulhassan, Z., Brestic, M. et al. Photosynthesis research under climate change. Photosynth Res 150, 5–19 (2021). https://doi.org/10.1007/s11120-021-00861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00861-z

Keywords

Navigation