Skip to main content
Log in

An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The present review highlights the regulatory roles of microRNAs in plant secondary metabolism and focuses on different bioengineering strategies to modulate secondary metabolite content in plants.

MicroRNAs (miRNAs) are the class of small endogenous, essential, non-coding RNAs that riboregulate the gene expression involved in various biological processes in most eukaryotes. MiRNAs has emerged as important regulators in plants that function by silencing target genes through cleavage or translational inhibition. These miRNAs plays an important role in a wide range of plant biological and metabolic processes, including plant development and various environmental response controls. Several important plant secondary metabolites like alkaloids, terpenoids, and phenolics are well studied for their function in plant defense against different types of pests and herbivores. Due to the presence of a wide range of biological and pharmaceutical properties of plant secondary metabolites, it is important to study the regulation of their biosynthetic pathways. The contribution of miRNAs in regulating plant secondary metabolism is not well explored. Recent advancements in molecular techniques have improved our knowledge in understanding the molecular function of genes, proteins, enzymes, and small RNAs involved in different steps of secondary metabolic pathways. In the present review, we have discussed the recent progress made on miRNA biogenesis, its regulation, and highlighted the current research developed in the field of identification, analysis, and characterizations of various miRNAs that regulate plant secondary metabolism. We have also discussed how different bioengineering strategies such as artificial miRNA (amiRNA), endogenous target mimicry, and CRISPR/Cas9 could be utilized to enhance the secondary metabolite production in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic downregulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alok A, Sandhya D, Jogam P et al (2020) The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Front Plant Sci 11:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Bio 14:475–488

    Article  CAS  Google Scholar 

  • Aminfar Z, Rabiei B, Tohidfar M, Mirjalili MH (2019) Identification of key genes involved in the biosynthesis of triterpenic acids in the mint family. Sci Rep 9:15826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson NA, Bonawitz ND, Nyffeler K, Chapple C (2015) Loss of FERULATE 5-HYDROXYLASE leads to mediator-dependent inhibition of soluble phenylpropanoid biosynthesis in Arabidopsis. Plant Physiol 169:1557–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajczyk M, Lange H, Bielewicz D et al (2020) SERRATE interacts with the nuclear exosome targeting (NEXT) complex to degrade primary miRNA precursors in Arabidopsis. Nucleic Acids Res 48(12):6839–6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranauske S, Mickute M, Plotnikova A et al (2015) Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res 43:2802–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith A (2015) Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res 43:3407–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Basak J, Nithin C (2015) Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting. Front Plant Sci 6:1–8

    Article  Google Scholar 

  • Basso MF, Ferreira PCG, Kobayashi AK et al (2019) MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J 17:1482–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A et al (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  CAS  PubMed  Google Scholar 

  • Ben Chaabane S, Liu R, Chinnusamy V et al (2013) STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41:1984–1997

    Article  CAS  PubMed  Google Scholar 

  • Bhat SS, Bielewicz D, Gulanicz T et al (2020) mRNA adenosine methylase (MTA) deposits m 6 A on pri- to modulate miRNA biogenesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 117(35):21785–21795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Hazra S, Chattopadhyay S (2016) Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene 6:82–89

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) ZS Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, Unver T (2015) Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol J 13:409–420

    Article  CAS  PubMed  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  PubMed  Google Scholar 

  • Bologna NG, Iselin R, Abriata LA et al (2018) Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant MicroRNA pathway. Mol Cell 69:709–719

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Avramenko TV (2015) New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs. Biotechnol Lett 37:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Vereshchagina YV (2013) Recent advances in the under- standing of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism. Adv Biochem Eng Biotechnol 134:1–22

    CAS  PubMed  Google Scholar 

  • Bulgakov VP, Veremeichik GN, Shkryl YN (2015) The rolB gene activates the expression of genes encoding microRNA processing machinery. Biotechnol Lett 37:921–925

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6:22312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XM (2005) microRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Cui P, Xiong L (2015) The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 43:8283–8298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SK, Chaabane SB, Shah P, Poulsen CP, Yang SW (2014) COP1 E3 ligase protects HYL1 to retain microRNA biogenesis. Nat Commun 5:5867

    Article  CAS  PubMed  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  CAS  PubMed  Google Scholar 

  • Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80:1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Cui YW, Fang XF, Qi YJ (2016) TRANSPORTIN1 promotes the association of MicroRNA with ARGONAUTE1 in Arabidopsis. Plant Cell 28:2576–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Lu S (2017) Biosynthesis and regulation of phenylpropanoids in plants. Crit Rev Plant Sci 36:1–34

    Article  Google Scholar 

  • Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong L, Pollier J, Bassard JE et al (2018) Coexpression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast. Metab Eng 49:1–12

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:2219–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earley K, Smith M, Weber R, Gregory B, Poethig R (2010) An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Science 1:15

    CAS  Google Scholar 

  • Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184(1):39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan K, Fan D, Ding Z, Su Y, Wang X (2015a) Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). Plant Physiol Biochem 97:350–360

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Li Y, Li C, Zhang Y (2015) Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One 10:e0139002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan D, Li C, Fan C et al (2020) MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populustomentosa. New Phytol 226(2):410–425

    Article  CAS  PubMed  Google Scholar 

  • Fang XF, Shi YP, Lu XL, Chen ZL, Qi YJ (2015) CMA33/XCT regulates small RNA production through modulating the transcription of dicer-like genes in Arabidopsis. Mol Plant 8:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Zhao G, Zhang S et al (2019) Chloroplast-to-nucleus signaling regulates microRNA biogenesis in Arabidopsis. Dev Cell 48(3):371-382e4

    Article  CAS  PubMed  Google Scholar 

  • Francisco-Mangilet AG, Karlsson P, Kim MH et al (2015) THO2, a core member of the THO/TREX complex, is required for microRNA production in Arabidopsis. Plant J 82(6):1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Guo H, Cheng Z et al (2013) NtNAC-R1, a novel NAC transcription factor gene in tobacco roots, responds to mechanical damage of shoot meristem. Plant Physiol Biochem 69:74–81

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Liu B, Li M et al (2018) Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. J Exp Bot 69:4249–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Wang J, Jiang N et al (2020) Hyponastic leaves 1 protects pri-miRNAs from nuclear exosome attack. Proc Natl Acad Sci USA 117(29):17429–17437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Nie J, Wang H (2021) MicroRNA biogenesis in plants. Plant Growth Regul 93:1–12

    Article  CAS  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK (2015) MicroRNAs and target mimics for crop improvement. Curr Sci 108:1624–1633

    Google Scholar 

  • Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajheidari M, Farrona S, Huettel B, Koncz Z, Koncz C (2012) CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell 24:1626–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Han MH, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA 101:1093–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao DC, Yang L, Xiao PG, Liu M (2012) Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol Plant 146:388–403

    Article  CAS  PubMed  Google Scholar 

  • Hiruma K, Onozawa-Komori M, Takahashi F et al (2010) Entry mode-dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens. Plant Cell 22:2429–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iki T, Yoshikawa M, Nishikiori M et al (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39:282–291

    Article  CAS  PubMed  Google Scholar 

  • Iki T, Yoshikawa M, Meshi T, Ishikawa M (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 31:267–278

    Article  CAS  PubMed  Google Scholar 

  • Iki T, Clery A, Bologna NG et al (2018) Structural lexibility enables alternative maturation, ARGONAUTE sorting and activities ofmiR168, a global gene silencing regulator in plants. Mol Plant 11:1108–1123

    Article  CAS  Google Scholar 

  • Iwata Y, Takahashi M, Fedoroff NV, Hamdan SM (2013) Dissecting the interactions of SERRATE with RNA and DICERLIKE 1 in Arabidopsis microRNA precursor processing. Nucleic Acids Res 41:9129–9140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:1–10

    Article  CAS  Google Scholar 

  • Jeena GS, Joshi A, Shukla RK (2021) Bm-miR172c-5p regulates lignin biosynthesis and secondary xylem thickness by altering ferulate 5 hydroxylase gene in Bacopa monnieri. Plant Cell Physiol 62(5):894–912

    Article  CAS  PubMed  Google Scholar 

  • Jeyaraj A, Zhang X, Hou Y et al (2017) Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences. BMC Plant Biol 17:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia X, Shen J, Liu H et al (2015) Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242:283–293

    Article  CAS  PubMed  Google Scholar 

  • Kajal M, Singh K (2017) Small RNA profiling for identification of miRNAs involved in regulation of saponins biosynthesis in Chlorophytum borivilianum. BMC Plant Biol 17:265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kajal M, Kaushal N, Kaur R, Singh K (2019) Identification of novel microRNAs and their targets in Chlorophytum borivilianum by small RNA and degradome sequencing. progression. Non-Coding RNA Res 4:141–154

    Article  CAS  Google Scholar 

  • Karlsson P, Christie MD, Seymour DK et al (2015) KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1. Proc Natl Acad Sci USA 112:14096–14101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettles GJ, Drurey C, Schoonbeek HJ, Maule AJ, Hogenhout SA (2013) Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol 198:1178–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandal H, Singh AP, Chattopadhyay D (2020) The MicroRNA397b-LACCASE2 module regulates root lignification under water and phosphate deficiency. Plant Physiol 182(3):1387–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohnen-Johannsen KL, Kayser O (2019) Tropane alkaloids: chemistry, pharmacology. Biosynth Prod Mol 24:796

    Google Scholar 

  • Kong W, Li Y, Zhang M, Jin F, Li J (2015) A novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing superroot1. Plant Cell Physiol 56(4):715–726

    Article  CAS  PubMed  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laubinger S, Zeller G, Henz SR, Buechel S, Sachsenberg T (2010) Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc Natl Acad Sci USA 107:17466–17473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Yu B (2021) Recent advances in the regulation of plant miRNA biogenesis. RNA Biol 17:1–10

    Google Scholar 

  • Li S, Zachgo S (2013) TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J 76:901–913

    Article  CAS  PubMed  Google Scholar 

  • Li J-F, Chung HS, Niu Y et al (2013a) Comprehensive protein-based artificial MicroRNA screens for effective gene silencing in plants. Plant Cell 25(5):1507–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhu Y, Guo X, Sun C, Luo H (2013b) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A Meyer BMC Genom 14:245

    Article  CAS  Google Scholar 

  • Li F, Wang W, Zhao N et al (2015) Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco. Plant Physiol 169:1062–1071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S, Liu K, Zhou B et al (2018a) MAC3A and MAC3B, two core subunits of the MOS4-associated complex, positively influence miRNA biogenesis. Plant Cell 30(2):481–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Xu R, Li A et al (2018b) SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 46:9148–9159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Li M, Liu K et al (2020) MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities. Proc Natl Acad Sci USA 117(38):23982–23990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation responsive microRNAs in Arabidopsis thaliana. PLoS ONE 7:e48951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu SF, Sun YH, Chiang VL (2009) Adenylation of plant miRNAs. Nucleic Acids Res 37:1878–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Li Q, Wei H et al (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Science USA 110:10848–10853

    Article  CAS  Google Scholar 

  • Luo QJ, Mittal A, Jia F, Rock CD (2012) An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol Biol 80:117–129

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zhang X, Luo Z, Zhang Q, Liu J (2015) Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biol 15:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahajan V, Mahajan A, Pagoch SS, Bedi YS, Gandhi SG (2011) microRNA mediated regulation of plant secondary metabolism: an In silico analysis. J Nat Sci Biol 2:44–45

    Google Scholar 

  • Mahizan NA, Yang SK, Moo CL et al (2019) Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24:2631

    Article  CAS  PubMed Central  Google Scholar 

  • Manavella PA, Hagmann J, Ott F et al (2012) Fast-forward genetics identiies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–870

    Article  CAS  PubMed  Google Scholar 

  • Mannino G, Gentile C, Ertani A, Serio G, Bertea C (2021) Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods—a review. Agriculture 11:212

    Article  CAS  Google Scholar 

  • Mathiyalagan R, Subramaniyam S, Natarajan S et al (2013) In silico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). J Ginseng Res 37:227–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5’ terminal nucleotide. Cell 133:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra P, Pandey A, Tiwari M et al (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montecillo JA, Chu L, Luan. (2020) CRISPR-Cas9 system for plant genome editing: current approaches and emerging developments. Agronomy 10:1033

    Article  CAS  Google Scholar 

  • Na G, Mu X, Grabowski P, Schmutz J, Lu C (2019) Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. Plant J 98:346–358

    Article  CAS  PubMed  Google Scholar 

  • Najafabadi AS, Naghavi MR (2018) Mining ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene 645:41–47

    Article  CAS  Google Scholar 

  • Ng DW, Zhang C, Miller M et al (2011) Cis- and trans-regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell 23:1729–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemeier S, Alves Junior L, Merkle T (2010) Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs). BMC Res Notes 3:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodríguez-Concepcion M, St-Pierre B, Burlat V (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30

    Article  CAS  PubMed  Google Scholar 

  • Owusu Adjei M, Zhou X, Mao M, Rafique F, Ma J (2021) MicroRNAs roles in plants secondary metabolism. Plant Signal Behav 16(7):1915590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey A, Misra P, Chandrashekar K, Trivedi PK (2012) Development of AtMYB12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep 31:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Pani A, Mahapatra RN (2013) Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. Genom Data 1:2–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Science USA 102:3691–3696

    Article  CAS  Google Scholar 

  • Park W, Zhai J, Lee JY (2009) Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. Plant Cell Rep 28:469–480

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Choi SW, Kim GM, Moller C, Pai HS, Yang SW (2021) Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1. Mol Plant 14(4):647–663

    Article  CAS  PubMed  Google Scholar 

  • Prakash P, Ghosliya D, Gupta V (2015) Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene 554:181–195

    Article  CAS  PubMed  Google Scholar 

  • Prakash P, Rajakani R, Gupta V (2016) Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput Biol Chem 61:62–74

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Zhang J, Zhang J et al (2017) Integrated RNA-seq and sRNA-seq analysis reveals miRNA effects on secondary metabolism in Solanum tuberosum L. Mol Genet Genom 292:37–52

    Article  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren GD, Chen XM, Yu B (2012) Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis. Curr Biol 22:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert-Seilaniantz A, MacLean D, Jikumaru Y et al (2011) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67(2):218–231

    Article  CAS  PubMed  Google Scholar 

  • Sabzehzari M, Naghavi MR (2019) Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants. Gene 682:13–24

    Article  CAS  PubMed  Google Scholar 

  • Saifi M, Nasrullah N, Ahmad MM, Ali A, Khan JA (2015) In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana. Plant Physiol Biochem 94:57–64

    Article  CAS  PubMed  Google Scholar 

  • Saifi M, Yogindran S, Nasrullah N, Nissar U, Gul I, Abdin MZ (2019) Co-expression of anti-miR319g and miRStv_11 lead to enhanced steviol glycosides content in Stevia rebaudiana. BMC Plant Biol 19(1):274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salvador-Guirao R, Baldrich P, Tomiyama S, Hsing YI, Okada K, San Segundo B (2019) OsDCL1a activation impairs phytoalexin biosynthesis and compromises disease resistance in rice. Ann Bot 123:79–93

    Article  CAS  PubMed  Google Scholar 

  • Samad AFA, Rahnamaie-Tajadod R, Sajad M et al (2019) Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics 20:586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez-Sanuy F, Peris-Peris C, Tomiyama S et al (2019) Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus. BMC Plant Biol 19(1):563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafrin F, Das SS, Sanan-Mishra N, Khan H (2015) Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. Plant Mol Biol 89:511–527

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, Trivedi PK (2016) MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development. Plant Physiol 171:944–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Badola PK, Bhatia C, Sharma D, Trivedi PK (2020) Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. Nat Plants 6:1262–1274

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010) Specific downregulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Srivastava S, Shasany AK, Sharma A (2016) Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Comput Biol Chem 64:154–162

    Article  CAS  PubMed  Google Scholar 

  • Song L, Han MH, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 deine a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA 104:5437–5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol 70:489–525

    Article  CAS  PubMed  Google Scholar 

  • Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15:173–183

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Sanchita SR, Srivastava G, Sharma A (2018) Comparative study of withanolide biosynthesis-related miRNAs in root and leaf tissues of Withania somnifera. Appl Biochem Biotechnol 185:1145–1159

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Ishihara H, Huep G et al (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su C, Li Z, Cheng J et al (2017) The protein phosphatase 4 and SMEK1 complex dephosphorylates HYL1 to promote miRNA biogenesis by antagonizing the MAPK cascade in Arabidopsis. Dev Cell 41:527–539

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Liu X, Yang J, Liu W, Du Q (2018) MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Mol Plant 11:806–814

    Article  CAS  PubMed  Google Scholar 

  • Takeda Y, Koshiba T, Tobimatsu Y et al (2017) Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta 246:337–349

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X (2012) Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods (San Diego, Calif) 58:10

    Article  CAS  Google Scholar 

  • Tang M, Bai X, Niu LJ, Chai X, Chen MS (2018) miR172 regulates both vegetative and reproductive development in the perennial woody plant Jatropha curcas. Plant Cell Physiol 59:2549–2563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teotia S, Singh D, Tang X, Tang G (2016) Essential RNA-based technologies and their applications in plant functional genomics. Trends Biotechnol 34(2):106–123

    Article  CAS  PubMed  Google Scholar 

  • Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV (2019) miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. J Exp Bot 70:4775–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel DA (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6:e1001031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai HL, Li YH, Hsieh WP, Lin MC, Ahn JH, Wu SH (2014) HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis. Plant Cell 26:2858–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu B, Liu L, Xu C et al (2015) Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet 11:e1005119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vashisht I, Mishra P, Pal T, Chanumolu S, Singh TR, Chauhan RS (2015) Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 241:1255–1268

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20(5):1231–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Ye R, Xin Y et al (2011) An importin beta protein negatively regulates MicroRNA activity in Arabidopsis. Plant Cell 23:3565–3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CY, Zhang S, Yu Y et al (2014) MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J 12:1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ma Z, Castillo-González C et al (2018) SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via serrate to impede miRNA production. Nature 557:516–521

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen S, Jiang N et al (2019a) Spliceosome disassembly factors ILP1 and NTR1 promote miRNA biogenesis in Arabidopsis thaliana. Nucleic Acids Res 47(15):7886–7900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Mei J, Ren G (2019b) Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci 10:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Alseekh S, Fernie AR, Luo J (2019c) The structure and function of major plant metabolite modifications. Mol Plant 12:899–919

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Xue Y, Zhang L et al (2021) Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. Science 374(6571):1152–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhou H, Zhang Q et al (2010) DNA methylation mediated by a MicroRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang D, Liu Y, Wang L, Qiao X, Zhang S (2014) Identification of miRNAs involved in pear fruit development and quality. BMC Genomics 3:953

    Article  CAS  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13(9):784–789

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Jiang Q, Ma X et al (2014) Deep sequencing identifies tissue-specific microRNAs and their target genes involving in thebiosynthesis of tanshinonesin Salvia miltiorrhiza. PLOS One 9:e111679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu M, Hu T, Zhao J et al (2016a) Developmental functions of miR156-regulated Squamosa promoter binding protein-like (SPL) genes in Arabidopsis thaliana. PLoS Genet 12:e1006263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu ML, Hu TQ, Smith MR, Poethig RS (2016b) Epigenetic regulation of vegetative phase change in Arabidopsis. Plant Cell 28:28–41

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Yao JL, Qin MF, Zhang MY, Allan AC (2019) PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol J 17:103–117

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wang P, Wang B et al (2017) The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLoS Genet 13:e1006753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Liu Z, Lu F, Dong A, Huang H (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850

    Article  CAS  PubMed  Google Scholar 

  • Yang SW, Chen HY, Yang J, Machida S, Chua NH (2010) Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18:594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Zeng Y, Yi X, Zhao L, Zhang Y (2015) Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachyscaspica. Plant Biotechnol J 13:395–408

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    Article  PubMed Central  CAS  Google Scholar 

  • Yang M, Lu H, Xue F, Ma L (2019a) Identifying high confidence microRNAs in the developing seeds of Jatropha curcas. Sci Rep 9:4510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang G, Li Y, Wu B, Zhang K, Gao L (2019b) MicroRNAs transcriptionally regulate promoter activity in Arabidopsis thaliana. J Integr Plant Biol 61:1128–1133

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Han H, Li Y, Ye J, Xu F (2022) Significance of miRNA in enhancement of flavonoid biosynthesis. Plant Biol (stuttg) 24(2):217–226

    Article  CAS  Google Scholar 

  • You C, He W, Hang R et al (2019) FIERY1 promotes microRNA accumulation by suppressing rRNA-derived small interfering RNAs in Arabidopsis. Nat Commun 10(1):1–15

    Article  CAS  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Bi L, Zheng B et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105(29):10073–10078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu ZX, Wang LJ, Zhao B et al (2015) Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 8:98–110

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Li L, Wei H, Shuxun Yu (2020) Identification and profiling of microRNAs and differentially expressed genes during anther development between a genetic male-sterile mutant and its wildtype cotton via high-throughput RNA sequencing. Mol Genet 295:645–660

    CAS  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Liu Y, Yu B (2014) PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 10(12):e1004841

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Guo X, Ge C et al (2017) KETCH1 imports HYL1 to nucleus for miRNA biogenesis in Arabidopsis. Proc Natl Acad Sci USA 114:4011–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Chen SL, Gong BQ et al (2018a) Engineering artificial MicroRNAs for multiplex gene silencing and simplified transgenic screen. Plant Physiol 178:989–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhang D, Samuel L et al (2018b) Engineering artificial MicroRNAs for multiplex gene silencing and simplified transgenic screen. Plant Physiol 178(3):989–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, You C, Zhang Y et al (2020) Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat Plants 6(8):957–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Wang W, Bai X, Qi Y (2008) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58:157–164

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Lin S, Qiu Z, Cao D, Wen J (2015a) MicroRNA857 Is Involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiol 169:2539–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YM, Wang F, Juan LR (2015b) MicroRNA promoter identification in Arabidopsis using multiple histone markers. Biomed Res Int 2015:861402

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang C, Liu W et al (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Deng K, Cheng Y et al (2017) CRISPR/Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuber H, Scheer H, Joly AC, Gagliardi D (2018) Respective contributions of URT1 and HESO1 to the uridylation of 50 fragments produced from RISC-cleaved mRNAs. Front Plant Sci 9:1438

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Director, CSIR-Central Institute of Medicinal & Aromatic Plants, Lucknow, India, for providing the necessary facilities. GSJ, NS, and S acknowledge UGC and CSIR for fellowship and AcSIR for registration. RKS acknowledges CSIR-CIMAP for funding.

Funding

Council of Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Contributions

GSJ wrote the first draft of manuscript and compiled the figures. NS has contributed in writing regulation of miRNA biogenesis; S has contributed in writing sulfur-containing secondary metabolites. GJ, NS and RKS have revised the manuscript. RKS has conceptualized and supervised the theme. All authors finally read and approved the manuscript.

Corresponding author

Correspondence to Rakesh Kumar Shukla.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeena, G.S., Singh, N., Shikha et al. An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. Plant Cell Rep 41, 1651–1671 (2022). https://doi.org/10.1007/s00299-022-02877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02877-8

Keywords

Navigation